Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (19): 74-91.DOI: 10.3778/j.issn.1002-8331.2501-0153

• Research Hotspots and Reviews • Previous Articles     Next Articles

Application of Deep Learning in Auxiliary Diagnosis of Rib Fractures

LI Zhiwei, LIU Jing, ZHANG Junzhong, WEI Dejian, CAO Hui   

  1. 1.School of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
    2.School of Medical Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
    3.First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
  • Online:2025-10-01 Published:2025-09-30

深度学习在肋骨骨折辅助诊断中的应用

李智唯,刘静,张俊忠,魏德健,曹慧   

  1. 1.山东中医药大学 外国语学院,济南 250355
    2.山东中医药大学 医学信息工程学院,济南 250355
    3.山东中医药大学 第一临床医学院,济南 250355

Abstract: Rib fracture refers to the complete or partial destruction of the integrity of the rib structure, which is one of the most common chest trauma in clinic. In recent years, deep learning technology has shown great potential in the auxiliary diagnosis of fracture. Therefore, this paper summarizes the deep learning methods used in the auxiliary diagnosis of rib fracture. This paper introduces the public image data set, systematically expounds the application of classical convolutional neural network in rib fracture lesion recognition, expounds the improved algorithm of rib fracture based on single network, the improved algorithm of rib fracture based on multi-network, the original rib fracture lesion recognition algorithm and the application of artificial intelligence in rib fracture diagnosis, compares the advantages and limitations of different models, points out the existing difficulties in this field, and prospects the future optimization direction.

Key words: deep learning, rib fracture, medical image processing, computer-aided diagnosis

摘要: 肋骨骨折特指肋骨结构的完整性遭受完全或部分破坏,是临床中最常见的胸部创伤之一。近几年深度学习技术在辅助骨折诊断方面展现出发展的巨大潜力,因此针对肋骨骨折辅助诊断中所采用的深度学习方法进行了总结梳理。介绍了公开的影像学数据集,系统阐述了经典卷积神经网络在肋骨骨折病灶识别中的应用,阐述了基于单网络模型的肋骨骨折改进算法、基于多网络模型的肋骨骨折改进算法、原创肋骨骨折病灶识别算法以及人工智能在肋骨骨折辅助诊断中的应用,比较了不同模型的优点以及局限性,指出该领域目前存在的难点并对未来优化方向进行展望。

关键词: 深度学习, 肋骨骨折, 医学图像处理, 计算机辅助诊断