[1] CHEN T S, LIN L, CHEN R Q, et al. Knowledge-guided multi-label few-shot learning for general image recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(3): 1371-1384.
[2] ZHOU W, DOU P, SU T, et al. Feature learning network with transformer for multi-label image classification[J]. Pattern Recognition, 2023, 136: 109203.
[3] REHMAN D, LIENHARD J H. Physics-informed deep learning for multi-species membrane separations[J]. Chemical Engineering Journal, 2024, 485: 149806.
[4] WANG Y J, ZHAO Y H, WANG Z K, et al. Robust multi-graph multi-label learning with dual-granularity labeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(10): 6509-6524.
[5] SHA Z C, LIU Z M, MA C, et al. Feature selection for multi-label classification by maximizing full-dimensional conditional mutual information[J]. Applied Intelligence, 2021, 51(1): 326-340.
[6] FAN Y L, LIU J H, TANG J N, et al. Learning correlation information for multi-label feature selection[J]. Pattern Recognition, 2024, 145: 109899.
[7] LIU J H, LIN Y J, DING W P, et al. Multi-label feature selection based on label distribution and neighborhood rough set[J]. Neurocomputing, 2023, 524: 142-157.
[8] HU J C, LI Y H, XU G C, et al. Dynamic subspace dual-graph regularized multi-label feature selection[J]. Neurocomputing, 2022, 467: 184-196.
[9] SAKAI T, KIM J Y, KANG I. A versatile framework for evaluating ranked lists in terms of group fairness and relevance[J]. ACM Transactions on Information Systems, 2024, 42(1): 1-36.
[10] DAI J H, HUANG W Y, ZHANG C C, et al. Multi-label feature selection by strongly relevant label gain and label mutual aid[J]. Pattern Recognition, 2024, 145: 109945.
[11] CHEN Y S, ZHOU R S, GUO B, et al. Discrete cosine transform for filter pruning[J]. Applied Intelligence, 2023, 53(3): 3398-3414.
[12] MOREO A, FRANCISCO M, SEBASTIANI F. Multi-label quantification[J]. ACM Transactions on Knowledge Discovery from Data, 2024, 18(1): 1-36.
[13] LAI Q, ZHOU J H, GAN Y F, et al. Single-stage broad multi-instance multi-label learning (BMIML) with diverse inter-correlations and its application to medical image classification[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1): 828-839.
[14] GAO Y, XU M, ZHANG M L. Unbiased risk estimator to multi-labeled complementary label learning[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence, 2023: 3732-3740.
[15] WAN J H, CHEN H M, YUAN Z, et al. A novel hybrid feature selection method considering feature interaction in neighborhood rough set[J]. Knowledge-Based Systems, 2021, 227: 107167.
[16] ZHANG P, GAO W F. Feature relevance term variation for multi-label feature selection[J]. Applied Intelligence, 2021, 51(7): 5095-5110.
[17] LIU Z M, LI J H, ZHANG X, et al. Multi-level information fusion for missing multi-label learning based on stochastic concept clustering[J]. Information Fusion, 2025, 115: 102775.
[18] SUN L, YIN T Y, DING W P, et al. Feature selection with missing labels using multilabel fuzzy neighborhood rough sets and maximum relevance minimum redundancy[J]. IEEE Transactions on Fuzzy Systems, 2022, 30(5): 1197-1211.
[19] HAO P T, GAO W F, HU L. Embedded feature fusion for multi-view multi-label feature selection[J]. Pattern Recognition, 2025, 157: 110888.
[20] 孙林, 梁娜, 王欣雅. 基于自适应邻域与聚类的非平衡数据特征选择[J]. 计算机工程与应用, 2024, 60(14): 74-85.
SUN L, LIANG N, WANG X Y. Feature selection using adaptive neighborhood and clustering for imbalanced data[J]. Computer Engineering and Applications, 2024, 60(14): 74-85.
[21] 李珑珠, 林耀进, 吕彦, 等. 利用邻域信息交互的在线流特征选择算法[J]. 计算机工程与应用, 2021, 57(21): 102-108.
LI L Z, LIN Y J, LYU Y, et al. Online streaming feature selection algorithm using neighborhood information interaction[J]. Computer Engineering and Applications, 2021, 57(21): 102-108.
[22] QIN J D, MARTíNEZ L, PEDRYCZ W, et al. An overview of granular computing in decision-making: extensions, applications, and challenges[J]. Information Fusion, 2023, 98: 101833.
[23] LIN T Y. Granular computing: practices, theories, and future directions[M]//Granular, fuzzy, and soft computing. New York: Springer, 2023: 199-219.
[24] YAO Y Y. The geometry of three-way decision[J]. Applied Intelligence, 2021, 51(9): 6298-6325.
[25] YAO Y Y. The Dao of three-way decision and three-world thinking[J]. International Journal of Approximate Reasoning, 2023, 162: 109032.
[26] YAO Y Y, YANG J L. Granular rough sets and granular shadowed sets: three-way approximations in Pawlak approximation spaces[J]. International Journal of Approximate Reasoning, 2022, 142: 231-247.
[27] GOU H Y, ZHANG X Y, YANG J L, et al. Three-way fusion measures and three-level feature selections based on neighborhood decision systems[J]. Applied Soft Computing, 2023, 148: 110842.
[28] 张璐, 刘盾, 杨新. Wrapper特征选择下的序贯三支分类方法[J]. 小型微型计算机系统, 2021, 42(8): 1675-1682.
ZHANG L, LIU D, YANG X. Novel wrapper feature selection method with sequential three-way classifier[J]. Journal of Chinese Computer Systems, 2021, 42(8): 1675-1682.
[29] 卓永泰, 董又铭, 高灿. 基于邻域互信息的三支特征选择[J]. 计算机工程与应用, 2022, 58(22): 159-164.
ZHUO Y T, DONG Y M, GAO C. Three-way feature selection based on neighborhood mutual information[J]. Computer Engineering and Applications, 2022, 58(22): 159-164.
[30] 张清华, 庞国弘, 李新太, 等. 基于代价敏感的序贯三支决策最优粒度选择方法[J]. 电子与信息学报, 2021, 43(10): 3001-3009.
ZHANG Q H, PANG G H, LI X T, et al. Optimal granularity selection method based on cost-sensitive sequential three-way decisions[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3001-3009.
[31] YAO Y Y. Three-way granular computing, rough sets, and formal concept analysis[J]. International Journal of Approximate Reasoning, 2020, 116: 106-125.
[32] YANG S Y, ZHANG H Y, SHI G, et al. Attribute reductions of quantitative dominance-based neighborhood rough sets with A-stochastic transitivity of fuzzy preference relations[J]. Applied Soft Computing, 2023, 134: 109994.
[33] SUN L, SI S S, DING W P, et al. TFSFB: two-stage feature selection via fusing fuzzy multi-neighborhood rough set with binary whale optimization for imbalanced data[J]. Information Fusion, 2023, 95: 91-108.
[34] PANIRI M, DOWLATSHAHI M B, NEZAMABADI-POUR H. MLACO: a multi-label feature selection algorithm based on ant colony optimization[J]. Knowledge-Based Systems, 2020, 192: 105285.
[35] HASHEMI A, DOWLATSHAHI M B, NEZAMABADI-POUR H. MFS-MCDM: multi-label feature selection using multi-criteria decision making[J]. Knowledge-Based Systems, 2020, 206: 106365.
[36] GAO W F, LI Y H, HU L. Multilabel feature selection with constrained latent structure shared term[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(3): 1253-1262.
[37] HASHEMI A, DOWLATSHAHI M B, NEZAMABADI-POUR H. An efficient Pareto-based feature selection algorithm for multi-label classification[J]. Information Sciences, 2021, 581: 428-447.
[38] HUANG R, WU Z J. Multi-label feature selection via manifold regularization and dependence maximization[J]. Pattern Recognition, 2021, 120: 108149.
[39] KASHEF S, NEZAMABADI-POUR H, NIKPOUR B. Multilabel feature selection: a comprehensive review and guiding experiments[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8(2): e1240.
[40] QIAN W B, XIONG C Z, WANG Y L. A ranking-based feature selection for multi-label classification with fuzzy relative discernibility[J]. Applied Soft Computing, 2021, 102: 106995.
[41] FAN Y L, LIU J H, TANG J N, et al. Learning correlation information for multi-label feature selection[J]. Pattern Recognition, 2024, 145: 109899. |