[1] AL DEBAGY O, MARTINEK P. A comparative review of microservices and monolithic architectures[C]//Proceedings of the 2018 IEEE 18th International Symposium on Computational Intelligence and Informatics, 2018: 149-154.
[2] WANG S, DING Z, JIANG C. Elastic scheduling for microservice applications in clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(1): 98-115.
[3] YAN M, LIANG X M, LU Z H, et al. HANSEL: adaptive horizontal scaling of microservices using Bi-LSTM[J]. Applied Soft Computing, 2021, 105: 107216.
[4] DE NARDIN I F, DA ROSA RIGHI R, LOPES T R L, et al. On revisiting energy and performance in microservices applications: a cloud elasticity-driven approach[J]. Parallel Computing, 2021, 108: 102858.
[5] GOLI A, MAHMOUDI N, KHAZAEI H, et al. A holistic machine learning-based autoscaling approach for microservice applications[C]//Proceedings of the 11th International Conference on Cloud Computing and Services Science, 2021: 190-198.
[6] SRIRAMA S N, ADHIKARI M, PAUL S. Application deployment using containers with auto-scaling for microservices in cloud environment[J]. Journal of Network and Computer Applications, 2020, 160: 102629.
[7] BAARZI A F, ESIDIS G. SHOWAR: right-sizing and efficient scheduling of microservices[C]//Proceedings of the ACM Symposium on Cloud Computing, 2021: 427-441.
[8] KWAN A, WONG J, JACOBSEN H A, et al. HyScale: hybrid and network scaling of Dockerized microservices in cloud data centres[C]//Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems, 2019: 80-90.
[9] LUO S, XU H, LU C, et al. Characterizing microservice dependency and performance: Alibaba trace analysis[C]//Proceedings of the ACM Symposium on Cloud Computing,2021: 412-426.
[10] BENSON T, AKELLA A,MALTZ D A. Network traffic characteristics of data centers in the wild[C]//Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, 2010: 267-280.
[11] XIA W F, ZHAO P, WEN Y G, et al. A survey on data center networking (DCN): infrastructure and operations[J]. IEEE Communications Surveys & Tutorials, 2016, 19(1): 640-656.
[12] DAWOUD W, TAKOUNA I, MEINEL C. Elastic virtual machine for fine-grained cloud resource provisioning[C]//Proceedings of the Global Trends in Computing and Communication Systems: 4th International Conference, 2011: 11-25.
[13] PACIFICI G,SPREITZER M,TANTAWI A N , et al. Performance management for cluster-based web services[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(12): 2333-2343.
[14] NIU Y, LIU F, LI Z.Load balancing across microservices[C]//Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, 2018: 198-206.
[15] YU Y, YANG J, GUO C, et al. Joint optimization of service request routing and instance placement in the microservice system[J]. Journal of Network and Computer Applications, 2019, 147: 102441.
[16] CERNY T, DONAHOO M J, TRNKA M. Contextual understanding of microservice architecture: current and future directions[J]. ACM SIGAPP Applied Computing Review, 2018, 17(4): 29-45.
[17] FEI X, LIU F, XU H, et al. Adaptive VNF scaling and flow routing with proactive demand prediction[C]//Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, 2018: 486-494.
[18] ABDULLAH M, IQBAL W, BERRAL J L, et al. Burst-aware predictive autoscaling for containerized microservices[J].IEEE Transactions on Services Computing, 2020, 15(3): 1448-1460.
[19] TANG H, ZHOU D, CHEN D. Dynamic network function instance scaling based on traffic forecasting and VNF placement in operator data centers[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 30(3): 530-543.
[20] NGUYEN H X, ZHU S, LIU M. Graph-PHPA: graph-based proactive horizontal pod autoscaling for microservices using LSTM-GNN[C]//Proceedings of the 2022 IEEE 11th International Conference on Cloud Networking, 2022: 237-241.
[21] 严明明. 基于深度学习的复杂时间序列预测模型研究[D]. 武汉: 华中科技大学, 2020.
YAN M M. Research of complex time series forecasting models based on deep learning[D]. Wuhan: Huazhong University of Science and Technology, 2020.
[22] COULSON N C, SOTIRIADIS S, BESSIS N. Adaptive microservice scaling for elastic applications[J]. IEEE Internet of Things Journal, 2020, 7(5): 4195-4202.
[23] HARCHOL-BALTER M. Performance modeling and design of computer systems: queueing theory in action[M]. Cambridge: Cambridge University Press, 2013.
[24] ABDULLAH M, IQBAL W, MAHMOOD A, et al. Predictive autoscaling of microservices hosted in fog microdata center[J]. IEEE Systems Journal, 2020, 15(1): 1275-1286.
[25] 李德方. 数据中心中的服务功能链调度与虚拟网络功能体部署研究[D]. 合肥: 中国科学技术大学, 2019.
LI D F. Service function chain scheduling and virtual network function placement in datacenter environment[D]. Hefei: University of Science and Technology of China, 2019.
[26] LIU Y, PEI A, WANG F, et al. An attention-based category-aware GRU model for the next POI recommendation[J]. International Journal of Intelligent Systems, 2021, 36(7): 3174-3189.
[27] KHATAEI MARAGHEH H, GHAREHCHOPOGH F S, MAJIDZADEH K, et al. A new hybrid based on long short-term memory network with spotted hyena optimization algorithm for multi-label text classification[J]. Mathematics, 2022, 10(3): 488.
[28] FAN D, SUN H, YAO J, et al. Well production forecasting based on ARIMA-LSTM model considering manual operations[J]. Energy, 2021, 220: 119708. |