[1] KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]//Proceedings of the Computer Vision & Pattern Recognition, 2014: 1725-1732.
[2] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//Advances in Neural Information Processing Systems, 2014.
[3] DONAHUE J, HENDRICKS L A, GUADARRAMA S, et al. Long-term recurrent convolutional networks for visual recognition and description[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 2625-2634.
[4] NG Y H, HAUSKNECHT M, VIJAYANARASIMHAN S, et al. Beyond short snippets: deep networks for video classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 2625-2634.
[5] CAO Z, HIDALGO G, TOMAS S, et al. OpenPose: realtime multi-person 2D pose estimation using part affinity fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 172-186.
[6] BALDERAS D, PONCE P, MOLINA A . Convolutional long short term memory deep neural networks for image sequence prediction[J]. Expert Systems with Application, 2019, 122: 152-162.
[7] ZHANG F, WANG Y, ZHANG Z. View-invariant action recognition in surveillance videos[C]//Proceedings of the First Asian Conference on Pattern Recognition, 2011: 580-583.
[8] LI K L, HUANG H K, TIAN S F, et al. Improving one-class SVM for anomaly detection[C]//Proceedings of the 2003 International Conference on Machine Learning and Cybernetics, 2003: 3077-3081.
[9] PENG X, WANG L, WANG X, et al. Bag of visual words and fusion methods for action recognition: comprehensive study and good practice[J]. Computer Vision and Image Understanding, 2016, 150: 109-125.
[10] 余兴.基于深度学习的视频行为识别技术研究[D].成都:电子科技大学, 2018.
YU X. Research on video behavior recognition technology based on deep learning[D].Chengdu: University of Electronic Science and Technology of China, 2018.
[11] 张瑞, 李其申, 储珺.基于3D卷积神经网络的人体动作识别算法[J]. 计算机工程, 2019, 45(1): 259-263.
ZHANG R, LI Q S, CHU J. Human action recognition algorithm based on 3D convolution neural network[J]. Computer Engineering, 2019, 45(1): 259-263.
[12] 钱国华, 程芳芳, 朱孝慈, 等.电梯内异常行为检测系统设计[J].工业控制计算机, 2019, 32(11): 91-92.
QIAN G H, CHENG F F, ZHU X C, et al. Design of abnormal behavior detection system in elevator[J]. Industrial Control Computer, 2019, 32(11): 91-92.
[13] CAO Y, XU H, YANG Q. Computer-vision-based abnormal human behavior detection and analysis in electric power plant[C]//Proceedings of the 2021 33rd Chinese Control and Decision Conference, 2021: 1578-1583.
[14] 赵凤, 李永恒, 李晶, 等.基于改进YOLOv4-tiny的轻量化室内人员目标检测算法[J].电子与信息学报, 2022, 44(11): 3815-3824.
ZHAO F, LI Y H, LI J, et al. Lightweight indoor personnel target detection algorithm based on improved YOLOv4-tiny[J]. Journal of Electronics and Information, 2022, 44(11): 3815-3824.
[15] 程浩然, 王薪陶, 李俊燃, 等.改进YOLOv4-tiny的疫情协同口罩佩戴检测方法[J].计算机工程与应用, 2023, 59(20): 208-218.
CHENG H R, WANG X T, LI J R, et al. Improving YOLOv4-tiny’s epidemic collaborative mask wearing detection method[J].Computer Engineering and Applications, 2023, 59(20): 208-218.
[16] 徐长友, 樊绍胜, 朱航.采用通道域注意力机制Deeplabv3+算法的遥感影像语义分割[J].控制工程, 2023, 30(2): 368-375.
XU C Y, FAN S S, ZHU H. Remote sensing image semantic segmentation using channel domain attention mechanism Deeplabv3+ algorithm[J]. Control Engineering, 2023, 30(2): 368-375.
[17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[18] 张廓, 陈章进, 张岩.改进YOLOv4-Tiny的SAR图像目标快速检测方法[J].计算机工程与应用, 2023, 59(14): 209-216.
ZHANG K, CHEN Z J, ZHANG Y. Improved YOLOv4-Tiny method for fast target detection in SAR images[J]. Computer Engineering and Applications, 2023, 59(14): 209-216.
[19] 王晓雯, 梁博, 刘芳芳.基于注意力机制与加权盒函数的YOLOv5的行人摔倒检测算法[J].山西大学学报(自然科学版), 2023, 46(2): 334-341.
WANG X W, LIANG B, LIU F F. Pedestrian fall detection algorithm based on attention mechanism and weighted box function of YOLOv5[J]. Journal of Shanxi University (Natural Science Edition), 2023, 46(2): 334-341.
[20] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[21] 王长清, 贺坤宇, 蒋帅.改进YOLOv4-tiny网络的狭小空间目标检测方法[J].计算机工程与应用, 2022, 58(10): 240-248.
WANG C Q, HE K Y, JIANG S. An improved small space target detection method for YOLOv4-tiny network[J]. Computer Engineering and Applications, 2022, 58(10): 240-248.
[22] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988. |