[1] LIU Z, HU H, LIN Y, et al. Swin transformer v2: scaling up capacity and resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), 2022: 12009-12019.
[2] DAI Z, LIU H, LE Q V, et al. Coatnet: marrying convolution and attention for all data sizes[C]//Advances in Neural Information Processing Systems, 2021: 3965-3977.
[3] KOTOVENKO D, WRIGHT M, HEIMBRECHT A, et al. Rethinking style transfer: from pixels to parameterized brushstrokes[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 12196-12205.
[4] SALAKHUTDINOV R, MNIH A, HINTON G. Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning, 2007: 791-798.
[5] KINGMA D P, WELLING M. Auto-encoding variational bayes[J]. arXiv:1312.6114, 2013.
[6] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680.
[7] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv:1511.06434, 2015.
[8] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[J]. arXiv:1701.07875, 2017.
[9] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017: 5769-5779.
[10] ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[C]//International Conference on Machine Learning, 2019: 7354-7363.
[11] 武随烁, 杨金福, 单义, 等. 使用孪生注意力机制的生成对抗网络的研究[J]. 计算机科学与探索, 2020, 14(5): 833-840.
WU S S, YANG J F, SHAN Y, et al. Research on generative adversarial networks using twins attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 833-840.
[12] YU F, SEFF A, ZHANG Y, et al. LSUN: construction of a large-scale image dataset using deep learning with humans in the loop[J]. arXiv:1506.03365, 2015.
[13] LIU Z, LUO P, WANG X, et al. Deep learning face attributes in the wild[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015: 3730-3738.
[14] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[15] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017: 6626-6637.
[16] B?HM V, SELJAK U. Probabilistic auto-encoder[J]. arXiv:2006.05479, 2020.
[17] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 7794-7803.
[18] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 7132-7141.
[19] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 13713-13722. |