Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (6): 68-77.DOI: 10.3778/j.issn.1002-8331.2308-0385

• Special Issue on Object Detection • Previous Articles     Next Articles

Small Object Detection Algorithm Based on ATO-YOLO

SU Jia, QIN Yichang, JIA Ze, WANG Jing   

  1. College of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
  • Online:2024-03-15 Published:2024-03-15

基于ATO-YOLO的小目标检测算法

苏佳,秦一畅,贾泽,王静   

  1. 河北科技大学 信息科学与工程学院,石家庄 050018

Abstract: Small object detection is of great significance in the field of computer vision. However, existing methods often suffer from issues such as missed detection and false alarms when dealing with challenges like scale variation, dense object arrangement, and irregular layouts. To address these problems, ATO-YOLO, an improved version of the YOLOv5 algorithm is proposed. Firstly, this paper introduces an adaptive feature extraction (AFE) module that incorporates an attention mechanism to enhance the feature representation capability of the detection model. By dynamically adjusting the weight allocation to highlight key object features, AFE improves the accuracy and robustness of object detection tasks in various scenarios. Secondly, a triple feature fusion (TFF) mechanism is designed to effectively utilize multi-scale information by fusing feature maps from different scales, resulting in more comprehensive object features and enhanced detection performance for small objects. Lastly, an output reconstruction (ORS) module is introduced, which removes the large object detection layer and adds a small object detection layer, enabling precise localization and recognition of small objects. This module also reduces model complexity and improves detection speed compared to the original model. Experimental results demonstrate that the ATO-YOLO algorithm achieves an mAP@0.5 of 38.2% on the VisDrone dataset, a 6.1?percentage points improvement over YOLOv5, with a relative FPS increase of 4.4%. This algorithm enables fast and accurate detection of small objects.

Key words: YOLOv5, multiscale feature fusion, adaptive feature extraction, small object detection

摘要: 小目标检测在计算机视觉领域具有重要意义,但现有方法在应对小目标的尺度变化、目标密集和无规则排列等挑战时经常出现漏检和误检的问题。为解决这些问题,提出基于改进YOLOv5算法的ATO-YOLO。为提升检测模型的特征表达能力,提出一种结合注意力机制的自适应特征提取模块(adaptive feature extraction,AFE),通过动态调整权重分配突出关键目标的特征表示,提高目标检测任务在不同场景下的准确性和鲁棒性。设计一种三重特征融合机制(triple feature fusion,TFF),能够在不同尺度下充分利用多尺度信息,将多个尺度的特征图融合,以获取更全面的目标特征,提升对小目标的检测效果。引入一种输出重构模块(output reconstruction,ORS),通过去除大目标检测层并增加小目标检测层,实现精确定位和识别小目标,并且相对于原模型复杂度更低,检测速度更快。实验结果表明,ATO-YOLO算法在VisDrone数据集上的mAP@0.5达到了38.2%,较原YOLOv5提升了6.1个百分点,且FPS较改进前提升了4.4%,能够快速准确地对小目标进行检测。

关键词: YOLOv5, 多尺度特征融合, 自适应特征提取, 小目标检测