Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (6): 43-54.DOI: 10.3778/j.issn.1002-8331.2307-0083
• Research Hotspots and Reviews • Previous Articles Next Articles
XIAO Lei, LI Qi
Online:
2024-03-15
Published:
2024-03-15
肖蕾,李琪
XIAO Lei, LI Qi. Survey of Temporal Knowledge Graph Completion Methods[J]. Computer Engineering and Applications, 2024, 60(6): 43-54.
肖蕾, 李琪. 时序知识图谱补全方法研究综述[J]. 计算机工程与应用, 2024, 60(6): 43-54.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2307-0083
[1] 宋浩楠, 赵刚, 孙若莹. 基于深度强化学习的知识推理研究进展综述[J]. 计算机工程与应用, 2022, 58(1): 12-25. SONG H N, ZHAO G, SUN R Y. Developments of knowledge reasoning based on deep reinforcement learning[J]. Computer Engineering and Applications, 2022, 58(1): 12-25. [2] 杨喆, 许甜, 靳哲, 等. 基于知识图谱的羊群疾病问答系统的构建与实现[J]. 华中农业大学学报, 2023, 42(3): 63-70. YANG Z, XU T, JIN Z, et al. Construction and application of knowledge graph of sheep & goat disease[J]. Journal of Huazhong Agricultural University, 2023, 42(3): 63-70. [3] 张雅晴, 单中原, 赵俊峰, 等. 基于智能映射推荐的知识图谱实例构建与演化方法[J]. 计算机科学, 2023, 50(6): 142-150. ZHANG Y Q, SHAN Z Y, ZHAO J F, et al. Intelligent mapping recommendation-based knowledge graph instance construction and evolution method[J]. Computer Science, 2023, 50(6): 142-150. [4] 徐蕙, 及洪泉, 姚晓明, 等. 智能电网中基于知识图谱的语义搜索算法[J]. 实验室研究与探索, 2021, 40(4): 71-74. XU H, JI H Q, YAO X M, et al. Knowledge graph-based semantic search algorithm in smart grid[J]. Research and Exploration in Laboratory, 2021, 40(4): 71-74. [5] 徐涌鑫, 赵俊峰, 王亚沙, 等. 时序知识图谱表示学习[J]. 计算机科学, 2022, 49(9): 162-171. XU Y X, ZHAO J F, WANG Y S, et al. Temporal knowledge graph representation learning[J]. Computer Science, 2022, 49(9): 162-171. [6] CAI B, XIANG Y, GAO L, et al. Temporal knowledge graph completion: a survey[J]. arXiv:2201.08236, 2022. [7] JIN W, QU M, JIN X, et al. Recurrent event network: autoregressive structure inference over temporal knowledge graphs[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Press (EMNLP), 2020: 6669-6683. [8] TRIVEDI R, DAI H, WANG Y, et al. Know-Evolve: deep temporal reasoning for dynamic knowledge graphs[J]. arXiv:1705.05742, 2017. [9] 申宇铭, 杜剑峰. 时态知识图谱补全的方法及其进展[J]. 大数据, 2021, 7(3): 30-41. SHEN Y M, DU J F. Temporal knowledge graph completion: methods and progress[J]. Big Data Research, 2021, 7(3): 30-41. [10] 马瑞新, 李泽阳, 陈志奎, 等. 知识图谱推理研究综述[J]. 计算机科学, 2022, 49(S1): 74-85. MA R X, LI Z Y, CHEN Z K, et al. Review of reasoning on knowledge graph[J]. Computer Science, 2022, 49(S1): 74-85. [11] 田玲, 张谨川, 张晋豪, 等. 知识图谱综述——表示、构建、推理与知识超图理论[J]. 计算机应用, 2021, 41(8): 2161-2186. TIAN L, ZHANG J C, ZHANG J H, et al. Knowledge graph survey: representation, construction, reasoning and knowledge hypergraph theory[J]. Journal of Computer Applications, 2021, 41(8): 2161-2186. [12] 张正航, 钱育蓉, 行艳妮, 等. 知识表示学习方法研究综述[J]. 计算机应用研究, 2021, 38(4): 961-967. ZHANG Z H, QIAN Y R, XING Y N, et al. Survey of knowledge representation learning methods[J]. Application Research of Computers, 2021, 38(4): 961-967. [13] 程开原, 姚俊萍, 李晓军, 等. 时态网络中知识图谱推荐: 关键技术与研究进展[J]. 中国电子科学研究院学报, 2021, 16(2): 174-183. CHENG K Y, YAO J P, LI X J, et al. Recommendation based on knowledge graph in temporal networks: key technologies and progress[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(2): 174-183. [14] 官赛萍, 靳小龙, 贾岩涛, 等. 面向知识图谱的知识推理研究进展[J]. 软件学报, 2018, 29(10): 2966-2994. GUAN S P, JIN X L, JIA Y T, et al. Knowledge reasoning over knowledge graph: a survey[J]. Journal of Software, 2018, 29(10): 2966-2994. [15] 汪雨竹, 彭涛, 朱蓓蓓, 等. 基于元学习的小样本知识图谱补全[J]. 吉林大学学报 (理学版), 2023, 61(3): 623-630. WANG Y Z, PENG T, ZHU B B, et al. Few-shot knowledge graph completion based on meta learning[J]. Journal of Jilin University (Science Edition), 2023, 61(3): 623-630. [16] 李凤英, 范伟豪. 基于时序感知的动态知识图谱补全方法[J]. 计算机工程与应用, 2022, 58(15): 202-209. LI F Y, FAN W H. Temporal aware approach for dynamic knowledge graph completion[J]. Computer Engineering and Applications, 2022, 58(15): 202-209. [17] ZHU A, OUYANG D, LIANG S, et al. Step by step: a hierar chical framework for multi-hop knowledge graph reasoning with reinforcement learning[J]. Knowledge-Based Systems, 2022, 248: 108843. [18] LEBLAY J, CHEKOL M W. Deriving validity time in knowledge graph[C]//Companion Proceedings of the Web Conference, 2018: 1771-1776. [19] GARCíA-DURáN A, DUMAN?I? S, NIEPERT M. Learning sequence encoders for temporal knowledge graph completion[J]. arXiv:1809.03202, 2018. [20] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems, 2013. [21] SADEGHIAN A, RODRIGUEZ M, WANG D Z, et al. Temporal reasoning over event knowledge graphs[C]//Workshop on Knowledge Base Construction, Reasoning and Mining, 2016. [22] CHEN Y, GOLDBERG S, WANG D Z, et al. Ontological pathfinding[C]//Proceedings of the 2016 International Conference on Management of Data, 2016: 835-846. [23] OMRAN P G, WANG K, WANG Z. Learning temporal rules from knowledge graph streams[C]//Proceedings of the AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering, 2019. [24] OMRAN P G, WANG K, WANG Z. Scalable rule learning via learning representation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 2149-2155. [25] LIU Y, MA Y, HILDEBRANDT M, et al. TLogic: temporal logical rules for explainable link forecasting on temporal knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 4120-4127. [26] CHEN J, REN J, DING W, et al. PaTeCon: a pattern-based temporal constraint mining method for conflict detection on knowledge graphs[J]. arXiv:2304.09015, 2023. [27] XIONG S, YANG Y, FEKRI F, et al. TILP: differentiable learning of temporal logical rules on knowledge graphs[C]//Proceedings of the Eleventh International Conference on Learning Representations, 2022. [28] SINGH I, KAUR N, GAUR G. NeuSTIP: a novel neuro-symbolic model for link and time prediction in temporal knowledge graphs[J]. arXiv:2305.11301, 2023. [29] CHEKOL M, PIRRò G, SCHOENFISCH J, et al. Marrying uncertainty and time in knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2017. [30] YANG F, YANG Z, COHEN W W. Differentiable learning of logical rules for knowledge base reasoning[C]//Advances in Neural Information Processing Systems, 2017. [31] HITCHCOCK F L. The expression of a tensor or a polyadic as a sum of products[J]. Journal of Mathematics and Physics, 1927, 6(1/4): 164-189. [32] GOEL R, KAZEMI S M, BRUBAKER M, et al. Diachronic embedding for temporal knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 3988-3995. [33] KAZEMI S M, POOLE D. Simple embedding for link prediction in knowledge graphs[C]//Advances in Neural Information Processing Systems, 2018. [34] LIN L, SHE K. Tensor decomposition-based temporal knowledge graph embedding[C]//Proceedings of the 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), 2020: 969-975. [35] LACROIX T, OBOZINSKI G, USUNIER N. Tensor decompositions for temporal knowledge base completion[J]. arXiv:2004.04926, 2020. [36] JAIN P, RATHI S, CHAKRRABARTI S. Temporal knowledge base completion: new algorithms and evaluation protocols[J]. arXiv:2005.05035, 2020. [37] XU C, CHEN Y Y, NAYYERI M, et al. Temporal knowledge graph completion using a linear temporal regularizer and multivector embeddings[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021: 2569-2578. [38] TUCKER L R. Some mathematical notes on three-mode factor analysis[J]. Psychometrika, 1966, 31(3): 279-311. [39] MA Y, TRESP V, DAXBERGER E A. Embedding models for episodic knowledge graphs[J]. Journal of Web Semantics, 2019, 59: 100490. [40] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning, 2011: 809-816. [41] NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2016. [42] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the International Conference on Machine Learning, 2016: 2071-2080. [43] YANG B, YIH W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv:1412.6575, 2014. [44] SHAO P, ZHANG D, YANG G, et al. Tucker decomposition-based temporal knowledge graph completion[J]. Knowledge-Based Systems, 2022, 238: 107841. [45] YU M, GUO J, YU J, et al. TBDRI: block decomposition based on relational interaction for temporal knowledge graph completion[J]. Applied Intelligence, 2023, 53(5): 5072-5084. [46] BALA?EVI? I, ALLEN C, HOSPEDALES T M. Tucker: tensor factorization for knowledge graph completion[J]. arXiv:1901.09590, 2019. [47] De LATHAUWER L. Decompositions of a higher-order tensor in block terms—part II: definitions and uniqueness[J]. SIAM Journal on Matrix Analysis and Applications, 2008, 30(3): 1033-1066. [48] JIANG T, LIU T, GE T, et al. Encoding temporal information for time-aware link prediction[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016: 2350-2354. [49] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2014. [50] DASGUPTA S S, RAY S N, TALUKDAR P. Hyte: hyperplane-based temporally aware knowledge graph embedding[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 2001-2011. [51] WANG Z, LI X. Hybrid-te: hybrid translation-based temporal knowledge graph embedding[C]//Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019: 1446-1451. [52] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2015: 687-696. [53] XU C, NAYYERI M, ALKHOURY F, et al. TeRo: a time-aware knowledge graph embedding via temporal rotation[J]. arXiv:2010.01029, 2020. [54] XU C, NAYYERI M, ALKHOURY F, et al. Temporal knowledge graph completion based on time series gaussian embedding[C]//Proceedings of the 19th International Semantic Web Conference, Athens, November 2-6, 2020: 654-671. [55] CHO K, VAN MERRI?NBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406.1078, 2014. [56] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[J]. arXiv:1703.06103, 2017. [57] WU J, CAO M, CHEUNG J C K, et al. Temp: temporal message passing for temporal knowledge graph completion[J]. arXiv:2010.03526, 2020. [58] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017. [59] 陈浩, 李永强, 冯远静. 基于多关系循环事件的动态知识图谱推理[J]. 模式识别与人工智能, 2020, 33(4): 337-343. CHEN H, LI Y Q, FENG Y J. Dynamic knowledge graph inference based on multiple relational cyclic events[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(4): 337-343. [60] LI Z, JIN X, LI W, et al. Temporal knowledge graph reasoning based on evolutional representation learning[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021: 408-417. [61] HAN Z, DING Z, MA Y, et al. Learning neural ordinary equations for forecasting future links on temporal knowledge graphs[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021: 8352-8364. [62] CHEN R T Q, RUBANOVA Y, BETTENCOURT J, et al. Neural ordinary differential equations[C]//Advances in Neural Information Processing Systems, 2018. [63] HAN Z, MA Y, WANG Y, et al. Graph hawkes neural network for forecasting on temporal knowledge graphs[J]. arXiv:2003.13432, 2020. [64] PARK N, LIU F, MEHTA P, et al. EvoKG: jointly modeling event time and network structure for reasoning over temporal knowledge graphs[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022: 794-803. [65] SHANG C, TANG Y, HUANG J, et al. End-to-end structure-aware convolutional networks for knowledge base completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 3060-3067. [66] BAI L, YU W, CHEN M, et al. Multi-hop reasoning over paths in temporal knowledge graphs using reinforcement learning[J]. Applied Soft Computing, 2021, 103: 107144. [67] HAN Z, CHEN P, MA Y, et al. Explainable subgraph reasoning for forecasting on temporal knowledge graphs[C]//Proceedings of the International Conference on Learning Representations, 2020. [68] JUNG Jaehun, JUNG Jinhong, KANG U. Learning to walk across time for interpretable temporal knowledge graph completion[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 786-795. [69] SUN H, ZHONG J, MA Y, et al. Timetraveler: reinforcement learning for temporal knowledge graph forecasting[J]. arXiv:2109.04101, 2021. [70] XIE Z W, ZHU R J, LIU J, et al. TARGAT: a time-aware relational graph attention model for temporal knowledge graph embedding[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023, 31: 2246-2258. [71] XU W, LIU B, PENG M, et al. Pre-trained language model with prompts for temporal knowledge graph completion[J]. arXiv:2305.07912, 2023. [72] HAN Z, LIAO R, LIU B, et al. Enhanced temporal knowledge embeddings with contextualized language representations[J]. arXiv:2203.09590, 2022. [73] LEE D H, AHRABIAN K, JIN W, et al. Temporal knowledge graph forecasting without knowledge using in-context learning[J]. arXiv:2305.10613, 2023. [74] BLACK S, BIDERMAN S, HALLAHAN E, et al. Gpt-neox-20b: an open-source autoregressive language model[J]. arXiv:2204.06745, 2022. [75] MAVROMATIS C, SUBRAMANYAM P L, IOANNIDIS V N, et al. Tempoqr: temporal question reasoning over knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 5825-5833. [76] GAO Y, HE Y, KAN Z, et al. Learning joint structural and temporal contextualized knowledge embeddings for temporal knowledge graph completion[C]//Proceedings of the Findings of the Association for Computational Linguistics, 2023: 417-430. [77] DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. [78] CHEN C, WANG Y, SUN A, et al. Dipping PLMs sauce: bridging structure and text for effective knowledge graph completion via conditional soft prompting[J]. arXiv:2307. 01709, 2023. [79] LI Z, JIN X, GUAN S, et al. Search from history and reason for future: two-stage reasoning on temporal knowledge graphs[J]. arXiv:2106.00327, 2021. [80] TANG X, YUAN R, LI Q, et al. Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution[J]. IEEE Access, 2020, 8: 6849-6860. [81] QIU X, SUN T, XU Y, et al. Pre-trained models for natural language processing: a survey[J]. Science China Technological Sciences, 2020, 63(10): 1872-1897. [82] WANG X, CHEN Y, ZHU W. A survey on curriculum learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(9): 4555-4576. [83] BAI L, ZHANG M, ZHANG H, et al. FTMF: few-shot temporal knowledge graph completion based on meta-optimization and fault-tolerant mechanism[J]. World Wide Web, 2023, 26(3): 1243-1270. [84] 何苗惠, 段旭祥, 吴至友. 提高长尾数据知识图谱补全性能的一种新算法[J/OL]. 运筹学学报: 1-14(2022-04-24)[2023-07-06]. http://kns.cnki.net/kcms/detail/31.1732.O1. 20220424.1147.012.html. HE M H, DUAN X X, WU Z Y. A new algorithm for improving the completion performance of knowledge graph of long-tail data[J/OL]. Operations Research Transactions: 1-14(2022-04-24) [2023-07-06]. http://kns.cnki.net/kcms/detail/31.1732.O1.20220424.1147.012.html. |
[1] | JIANG Yuzhe, CHENG Quan. Drug Recommendation Model for Graph Embedding Dual Graph Convolutional Network [J]. Computer Engineering and Applications, 2024, 60(7): 315-324. |
[2] | ZHAO Wentao, XUE Saili, LIU Tiantian. Recommendation for Reducing Unrelated Neighborhoods by Combining Project Attribute Collaboration Signals [J]. Computer Engineering and Applications, 2024, 60(7): 101-107. |
[3] | HU Juan, XI Xuefeng, CUI Zhiming. Review of Conversational Machine Reading Comprehension for Knowledge Graph [J]. Computer Engineering and Applications, 2024, 60(3): 17-28. |
[4] | TANG Wentao, HU Zelin. Survey of Agricultural Knowledge Graph [J]. Computer Engineering and Applications, 2024, 60(2): 63-76. |
[5] | LIU Wenjie, YAO Junfei, CHEN Liang. Knowledge Graph Embedding Model Based on k-Order Sampling and Graph Attention Networks [J]. Computer Engineering and Applications, 2024, 60(2): 113-120. |
[6] | LIANG Meilin, DUAN Youxiang, CHANG Lunjie, SUN Qifeng. Knowledge Graph Completion Method Based on Neighborhood Hierarchical Perception [J]. Computer Engineering and Applications, 2024, 60(2): 147-153. |
[7] | QIU Ling, ZHANG Ansi, ZHANG Yu, LI Shaobo, LI Chuanjiang, YANG Lei. Application Method of Knowledge Graph Construction for UAV Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(9): 280-288. |
[8] | QIU Yunfei, XING Haoran, LI Gang. Summary of Research on Construction of Knowledge Graph for Mine Construction [J]. Computer Engineering and Applications, 2023, 59(7): 64-79. |
[9] | LUO Shijie, LYU Wentao, LI Fan, CUI Jiaxi, XIANG Jie. Dynamic Network Link Prediction Method for Fusion Topology and Attributes [J]. Computer Engineering and Applications, 2023, 59(5): 122-130. |
[10] | ZHANG Jiayu, GUO Mei, ZHANG Yongliang, LI Mei, GENG Nan, GENG Yaojun. Research on Construction of Fine-Grained Knowledge Graph of Apple Diseases and Pests [J]. Computer Engineering and Applications, 2023, 59(5): 270-280. |
[11] | WU Guodong, WANG Xueni, LIU Yuliang. Research Advances on Graph Neural Network Recommendation of Knowledge Graph Enhancement [J]. Computer Engineering and Applications, 2023, 59(4): 18-29. |
[12] | ZHANG Mingxing, ZHANG Xiaoxiong, LIU Shanshan, TIAN Hao, YANG Qinqin. Review of Recommendation Systems Using Knowledge Graph [J]. Computer Engineering and Applications, 2023, 59(4): 30-42. |
[13] | WANG Yiru, SHI Donghui. Ontology Construction of Architectural Intangible Cultural Heritage Knowledge Using CIDOC CRM [J]. Computer Engineering and Applications, 2023, 59(3): 317-326. |
[14] | XIAO Lizhong, ZANG Zhongxing, SONG Saisai. Research on Cascaded Labeling Framework for Relation Extraction with Self-Attention [J]. Computer Engineering and Applications, 2023, 59(3): 77-83. |
[15] | QU Zhihao, HU Jianpeng, HUANG Ziqi, ZHANG Geng. Research on Construction and Application of Knowledge Graph for Industrial Equipment Fault Disposal [J]. Computer Engineering and Applications, 2023, 59(24): 309-318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||