Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (6): 259-273.DOI: 10.3778/j.issn.1002-8331.2211-0099
• Graphics and Image Processing • Previous Articles Next Articles
FANG Siyan, LIU Bin
Online:
2024-03-15
Published:
2024-03-15
方思严,刘斌
FANG Siyan, LIU Bin. Wavelet Frequency Division Self-Attention Transformer Image Deraining Network[J]. Computer Engineering and Applications, 2024, 60(6): 259-273.
方思严, 刘斌. 小波分频自注意力Transformer图像去雨网络[J]. 计算机工程与应用, 2024, 60(6): 259-273.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2211-0099
[1] KANG L W, LIN C W, FU Y H. Automatic single-image-based rain streaks removal via image decomposition[J].IEEE Transactions on Image Processing, 2011, 21(4): 1742-1755. [2] LUO Y, XU Y, JI H. Removing rain from a single image via discriminative sparse coding[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 3397-3405. [3] LI Y, TAN R T, GUO X J, et al. Rain streak removal using layer priors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2736-2744. [4] 刘腊梅, 王晓娜, 刘万军, 等. 融合转置卷积与深度残差图像语义分割方法[J]. 计算机科学与探索, 2022, 16(9): 2132-2142. LIU L M, WANG X N, LIU W J, et al. Image semantic segmentation method with fusion of transposed convolution and deep residual[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2132-2142. [5] 欧阳柳, 贺禧, 瞿绍军. 全卷积注意力机制神经网络的图像语义分割[J]. 计算机科学与探索, 2022, 16(5): 1136-1145. OU Y L, HE X, QU S J. Fully convolutional neural network with attention module for semantic segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1136-1145. [6] 张哲晗, 方薇, 杜丽丽, 等. 基于编码-解码卷积神经网络的遥感图像语义分割[J]. 光学学报, 2020, 40(3): 40-49. ZHANG Z H, FANG W, DU L L, et al. Semantic segmentation of remote sensing image based on encoder-decoder convolutional neural network[J]. Acta Optica Sinica, 2020, 40(3): 40-49. [7] WANG H, XIE Q, ZHAO Q, et al. A model-driven deep neural network for single image rain removal[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3103-3112. [8] WANG T Y, YANG X, XU K, et al. Spatial attentive single-image deraining with a high quality real rain dataset[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12270-12279. [9] WANG C, XING X Y, WU Y T, et al. DCSFN: deep cross-scale fusion network for single image rain removal[C]//Proceedings of the 28th ACM International Conference on Multimedia, 2020: 1643-1651. [10] YANG W H, LIU J Y, YANG S, et al. Scale-free single image deraining via visibility-enhanced recurrent wavelet learning[J]. IEEE Transactions on Image Processing, 2019, 28(6): 2948-2961. [11] ZHAO J, XIE J Y, XIONG R Q, et al. Pyramid convolutional network for single image deraining[C]//CVPR Workshops, 2019: 9-16. [12] YI Q S, LI J C, DAI Q Y, et al. Structure-preserving deraining with residue channel prior guidance[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 4238-4247. [13] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017. [14] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16 × 16 words: transformers for image recognition at scale[EB/OL].(2021-06-03)[2022-09-20]. https://arxiv.org/pdf/2010.11929.pdf. [15] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022. [16] LIU Z, HU H, LIN Y T, et al. Swin transformer v2: scaling up capacity and resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 12009-12019. [17] CHEN H T, WANG Y H, GUO T Y, et al. Pre-trained image processing transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12299-12310. [18] LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1833-1844. [19] WANG Z D, CUN X D, BAO J M, et al. Uformer: a general u-shaped transformer for image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 17683-17693. [20] ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5728-5739. [21] XIAO J, FU X Y, LIU A P, et al. Image de-raining transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 12978-12995. [22] PARK N, KIM S. How do vision transformers work?[EB/OL].(2022-06-08)[2022-09-20]. https://arxiv.org/pdf/2202. 06709.pdf. [23] SI C Y, YU W H, ZHOU P, et al. Inception Transformer [EB/OL].(2022-05-26)[2022-09-20]. https://arxiv.org/pdf/2205.12956.pdf. [24] LIU B, LIU W. The lifting factorization of 2D 4-channel nonseparable wavelet transforms[J]. Information Sciences, 2018, 456: 113-130. [25] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. [26] JIANG K, WANG Z Y, YI P, et al. Multi-scale progressive fusion network for single image deraining[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8346-8355. [27] 刘斌, 彭嘉雄. 基于四通道不可分加性小波的多光谱图像融合[J]. 计算机学报, 2009, 32(2): 350-356. LIU B, PENG J X. Fusion method of multi-spectral image and panchromatic image based on four channels non-sperable additive wavelets[J]. Chinese Journal of Computers, 2009, 32(2): 350-356. [28] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [29] YANG W H, TAN R T, FENG J S, et al. Deep joint rain detection and removal from a single image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1357-1366. [30] ZHANG H, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 695-704. [31] ZHANG H, SINDAGI V, PATEL V M. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11): 3943-3956. [32] VICENTE S, CARREIRA J, AGAPITO L, et al. Reconstructing pascal voc[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 41-48. [33] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL].(2017-01-30)[2022-09-20].https://arxiv.org/pdf/1412.6980.pdf. [34] LI X, WU J L, LIN Z C, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 254-269. [35] REN D W, ZUO W M, HU Q H, et al. Progressive image deraining networks: a better and simpler baseline[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3937-3946. [36] REN D W, SHANG W, ZHU P F, et al. Single image deraining using bilateral recurrent network[J]. IEEE Transactions on Image Processing, 2020, 29: 6852-6863. [37] GUO Q, SUN J Y, JUEFEI-XU F, et al. Efficientderain: learning pixel-wise dilation filtering for high-efficiency single-image deraining[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 1487-1495. [38] CUI X, WANG C, REN D W, et al. Semi-supervised image deraining using knowledge distillation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(12): 8327-8341. [39] LI Y Z, MONNO Y, OKUTOMI M. Single image deraining network with rain embedding consistency and layered LSTM[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 4060-4069. [40] SANDLER M, HOWARD A, ZHU M L, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520. [41] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818. |
[1] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[2] | PIAN Xinyang, WANG Yu, ZHANG Jie. Applying Attention Transformer Module to 3D Lip Sequence Identification [J]. Computer Engineering and Applications, 2024, 60(7): 141-146. |
[3] | LIU Xinning. Medical Named Entity Recognition Based on Multi-Feature and Co-Attention [J]. Computer Engineering and Applications, 2024, 60(6): 188-198. |
[4] | CAI Guoyong, LI Anqing. Prompt-Learning Inspired Approach to Unsupervised Sentiment Style Transfer [J]. Computer Engineering and Applications, 2024, 60(5): 146-155. |
[5] | XIE Ruobing, LI Maojun, LI Yiwei, HU Jianwen. Improving YOLOX-s Dense Garbage Detection Method [J]. Computer Engineering and Applications, 2024, 60(5): 250-258. |
[6] | ZHU Kai, LI Li, ZHANG Tong, JIANG Sheng, BIE Yiming. Survey of Vision Transformer in Low-Level Computer Vision [J]. Computer Engineering and Applications, 2024, 60(4): 39-56. |
[7] | FANG Hong, LI Desheng, JIANG Guangjie. Efficient Cross-Domain Transformer Few-Shot Semantic Segmentation Network [J]. Computer Engineering and Applications, 2024, 60(4): 142-152. |
[8] | TIAN Hongli, CUI Yao, YAN Huiqiang. Stock Prediction Method Combining Graph Convolution and Convolution Self-Attention [J]. Computer Engineering and Applications, 2024, 60(4): 192-199. |
[9] | GUAN Wenqing, ZHOU Shibin, ZHANG Guopeng. Aerial Image Object Detection with Feature Enhancement Using Hybrid Attention [J]. Computer Engineering and Applications, 2024, 60(4): 249-257. |
[10] | CHEN Lifang, LUO Shiyong. Multi-Scale Liver Tumor Segmentation Algorithm by Fusing Convolution and Transformer [J]. Computer Engineering and Applications, 2024, 60(4): 270-279. |
[11] | CHANG Jian, CHEN Hongfu, WANG Bingbing. Underwater Image Enhancement Based on Parallel Guidance of Transformer and CNN [J]. Computer Engineering and Applications, 2024, 60(4): 280-288. |
[12] | PAN Dinghao, YANG Zhihao, LIN Hongfei, WANG Jian. Dialogue Symptom Inference Based on Structured Self-Attention Network [J]. Computer Engineering and Applications, 2024, 60(4): 331-337. |
[13] | JIN Haibo, MA Linlin, TIAN Guiyuan. Single Image Defogging Method Under Adaptive Transformer Network [J]. Computer Engineering and Applications, 2024, 60(3): 237-245. |
[14] | DENG Zhenrong, XIONG Yuxu, YANG Rui, CHEN Yuren. Improved YOLOv5 Helmet Wearing Detection Algorithm for Small Targets [J]. Computer Engineering and Applications, 2024, 60(3): 78-87. |
[15] | ZHANG Yingjun, BAI Xiaohui, XIE Binhong. Multi-Object Tracking Algorithm Based on CNN-Transformer Feature Fusion [J]. Computer Engineering and Applications, 2024, 60(2): 180-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||