Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (5): 221-231.DOI: 10.3778/j.issn.1002-8331.2210-0155
• Graphics and Image Processing • Previous Articles Next Articles
CHEN Weijie, HUANG Guoheng, MO Fei, LIN Junyu
Online:
2024-03-01
Published:
2024-03-01
陈伟杰,黄国恒,莫非,林俊宇
CHEN Weijie, HUANG Guoheng, MO Fei, LIN Junyu. Image Super-Resolution Reconstruction Algorithm with Adaptive Aggregation of Hierarchical Information[J]. Computer Engineering and Applications, 2024, 60(5): 221-231.
陈伟杰, 黄国恒, 莫非, 林俊宇. 层次信息自适应聚合的图像超分辨率重建算法[J]. 计算机工程与应用, 2024, 60(5): 221-231.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2210-0155
[1] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the European Conference on Computer Vision, 2014: 184-199. [2] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654. [3] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 136-144. [4] ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 286-301. [5] ZHANG Y, TIAN Y, KONG Y, et al. Residual dense network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2472-2481. [6] DAI T, CAI J, ZHANG Y, et al. Second-order attention network for single image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 11065-11074. [7] HUI Z, GAO X, YANG Y, et al. Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM International Conference on Multimedia, 2019: 2024-2032. [8] LIU J, TANG J, WU G. Residual feature distillation network for lightweight image super-resolution[C]//Proceedings of the European Conference on Computer Vision, 2020: 41-55. [9] LIU J, ZHANG W, TANG Y, et al. Residual feature aggregation network for image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2359-2368. [10] ZHAO H, KONG X, HE J, et al. Efficient image super-resolution using pixel attention[C]//Proceedings of the European Conference on Computer Vision, 2020: 56-72. [11] ZHANG Q L, YANG Y B. SA-Net: shuffle attention for deep convolutional neural networks[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021: 2235-2239. [12] WANG Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [13] ZHANG L, WU X. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE Transactions on Image Processing, 2006, 15(8): 2226-2238. [14] RHEE S, KANG M G. Discrete cosine transform based regularized high-resolution image reconstruction algorithm[J]. Optical Engineering, 1999, 38(8): 1348-1356. [15] 丁子轩, 张娟, 李想, 等. 基于注意力引导的轻量级图像超分辨率网络[J]. 激光与光电子学进展, 2023, 60(14):95-103. DING Z X, ZHANG J, LI X, et al. Lightweight attention-guided network for image super-resolution[J]. Laser & Optoelectronics Progress, 2023, 60(14):95-103. [16] TIAN C, XU Y, ZUO W, et al. Coarse-to-fine CNN for image super-resolution[J]. IEEE Transactions on Multimedia, 2021, 23: 1489-1502. [17] TIAN C, ZHUGE R, WU Z, et al. Lightweight image super-resolution with enhanced CNN[J]. Knowledge-Based Systems, 2020, 205: 106235. [18] 程德强, 赵佳敏, 寇旗旗, 等. 多尺度密集特征融合的图像超分辨率重建[J]. 光学精密工程, 2022, 30(20): 2489-2500. CHENG D Q, ZHAO J M, KOU Q Q, et al. Multi-scale dense feature fusion network for image super-resolution[J]. Optics and Precision Engineering, 2022, 30(20): 2489-2500. [19] 张帅勇, 刘美琴, 姚超, 等. 分级特征反馈融合的深度图像超分辨率重建[J]. 自动化学报, 2022, 48(4): 992-1003. ZHANG S Y, LIU M Q, YAO C, et al. Hierarchical feature feedback network for depth super-resolution reconstruction[J]. Acta Automatica Sinica, 2022, 48(4): 992-1003. [20] 杨才东, 李承阳, 李忠博, 等. 深度学习的图像超分辨率重建技术综述[J]. 计算机科学与探索, 2022, 16(9): 1990-2010. YANG C D, LI C Y, LI Z B, et al. Review of image super-resolution reconstruction algorithms based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. [21] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1637-1645. [22] TAI Y, YANG J, LIU X. Image super-resolution via deep recursive residual network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3147-3155. [23] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the European Conference on Computer Vision, 2016: 391-407. [24] SHI W, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1874-1883. [25] 许娇, 袁三男. 增强型多尺度残差网络的图像超分辨率重建算法[J]. 激光与光电子学进展, 2023, 60(4): 297-305. XU J, YUAN S N. Image super-resolution reconstruction algorithm based on enhanced multi-scale residual network[J]. Laser & Optoelectronics Progress, 2023, 60(4): 297-305. [26] AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 252-268. [27] TIAN C, XU Y, ZUO W, et al. Asymmetric CNN for image super-resolution[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(6): 3718-3730. [28] HUI Z, WANG X, GAO X. Fast and accurate single image super-resolution via information distillation network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 723-731. [29] QIN J, LIU F, LIU K, et al. Lightweight hierarchical residual feature fusion network for single-image super-resolution[J]. Neurocomputing, 2022, 478: 104-123. [30] LI J, FANG F, MEI K, et al. Multi-scale residual network for image super-resolution[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 517-532. [31] FENG X, LI X, LI J. Multi-scale fractal residual network for image super-resolution[J]. Applied Intelligence, 2021, 51(4): 1845-1856. [32] GAO S H, CHENG M M, ZHAO K, et al. Res2net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 652-662. [33] YUAN P, LIN S, CUI C, et al. HS-ResNet: hierarchical-split block on convolutional neural network[J]. arXiv:2010.07621,2020. [34] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. [35] LAN R, SUN L, LIU Z, et al. MADNet: a fast and lightweight network for single-image super resolution[J]. IEEE Transactions on Cybernetics, 2021, 51(3): 1443-1453. [36] SCHWARTZ I, SCHWING A, HAZAN T. High-order attention models for visual question answering[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 3667-3677. [37] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19. [38] BA J L, KIROS J R, HINTON G E. Layer normalization[J]. arXiv:1607.06450,2016. [39] AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 126-135. [40] 钟梦圆, 姜麟. 超分辨率图像重建算法综述[J]. 计算机科学与探索, 2022, 16(5): 972-990. ZHONG M Y, JIANG L. Review of super-resolution image reconstruction algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 972-990. [41] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on non-negative neighbor embedding[C]//Proceedings of the British Machine Vision Conference (BMVC), 2012: 1-10. [42] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//Proceedings of the International Conference on Curves and Surfaces, 2010: 711-730. [43] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings 8th IEEE International Conference on Computer Vision, 2001: 416-423. [44] HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5197-5206. [45] MATSUI Y, ITO K, ARAMAKI Y, et al. Sketch-based manga retrieval using manga109 dataset[J]. Multimedia Tools and Applications, 2017, 76(20): 21811-21838. [46] KINGMA D P, BA J. ADAM: a method for stochastic optimization[J]. arXiv:1412.6980,2014. [47] LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 624-632. [48] TAI Y, YANG J, LIU X, et al. MemNET: a persistent memory network for image restoration[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4539-4547. |
[1] | WANG Rong, DUANMU Chunjiang. Multi-Coupled Feedback Networks for Image Fusion and Super-Resolution Methods [J]. Computer Engineering and Applications, 2024, 60(5): 210-220. |
[2] | ZHANG Yanqing, MA Jianhong, HAN Ying, CAO Yangjie, LI Jie, YANG Cong. Review of Research on Real-World Single Image Super-Resolution Reconstruction [J]. Computer Engineering and Applications, 2023, 59(8): 28-40. |
[3] | LI Hao, YANG Zhijing, WANG Meilin, LING Wing-Kuen. Real-World Image Super-Resolutioin Based on Noise and U-Shape Discrimination Network [J]. Computer Engineering and Applications, 2023, 59(6): 204-211. |
[4] | LI Hao, ZHAO Guangzhe. DRUSR:Effect-Oriented Super-Resolution Reconstruction of Images [J]. Computer Engineering and Applications, 2023, 59(24): 165-175. |
[5] | ZHANG Weifan, ZENG Qingpeng. Multi-Scale Medical Image Super-Resolution Reconstruction [J]. Computer Engineering and Applications, 2022, 58(23): 230-237. |
[6] | LI Hangyu, XUAN Zuxing, ZHOU Jianping, HU Xiyuan, CHENG Gangwei. Super-Resolution of Fundus Images by Information Distillation and Heterogeneous Up-Sampling [J]. Computer Engineering and Applications, 2022, 58(23): 238-244. |
[7] | FANG Jinsheng, ZHU Gupei. Image Super-Resolution with Light-Weighted Pyramid Pooling-Based Attention Network [J]. Computer Engineering and Applications, 2022, 58(20): 197-205. |
[8] | LIAN Weiwen, WU Bin, ZHANG Hongying, LI Xue. Super-Resolution Reconstruction of Efficient Second-Order Attention Dual Regression Network [J]. Computer Engineering and Applications, 2022, 58(20): 220-228. |
[9] | YANG Xianing, WANG Banghai, LI Zuolong. Super-Resolution Reconstruction of Aerial Images Based on Hierarchical Feature Fusion Network [J]. Computer Engineering and Applications, 2022, 58(19): 224-232. |
[10] | LIU Nanyan, MA Shengxiang, Wei Hongfei. Super-Resolution Reconstruction of Single-Frame Images in Cross-Scale Multi-Branching Networks [J]. Computer Engineering and Applications, 2022, 58(19): 257-266. |
[11] | ZHANG Yong, LYU Geng. Dual Regression Networks for Single Image Super-Resolution [J]. Computer Engineering and Applications, 2022, 58(18): 277-283. |
[12] | LI Xue, ZHANG Hongying, WU Yadong, LIAN Weiwen. Stereo Image Super-Resolution Network for Loop Structure and PAM [J]. Computer Engineering and Applications, 2022, 58(17): 239-248. |
[13] | WEI Zixian, XIONG Zhengqiang, MAO Yutong, SUN Tao. Adaptive IQA Threshold for NLM Multi-Frame Super-Resolution Method [J]. Computer Engineering and Applications, 2022, 58(13): 249-256. |
[14] | LI Xianguo, FENG Xinxin, LI Jianxiong. Sigle Image Super-Resolution Reconstruction Based on Multi-scale Residual Network [J]. Computer Engineering and Applications, 2021, 57(7): 215-221. |
[15] | SHEN Yu, LIU Cheng, YANG Qian. Super-Resolution Image Reconstruction Algorithm Using Sparse Features in Subspace [J]. Computer Engineering and Applications, 2021, 57(5): 173-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||