[1] POLK, PHILIPPE B, GERARD S. An automated method for tree-ring delineation based on active contours guided by DT-CWT complex coefficients in photographic images: application to Abies alba wood slice images[J]. Computers and Electronics in Agriculture, 2015, 118: 204-214.
[2] FANG K Y, HE M S, BAI M W, et al. The potential to use variations in tree-ring geometric center to estimate past wind speed change[J]. Natural Hazards Research, 2022, 2(2): 132-137.
[3] 宋馥杉, 方欧娅. 三江源国家公园大果圆柏生长衰退历史研究[J]. 森林与环境学报, 2019, 39(4): 386-392.
SONG F S, FANG O Y. Research on history of Juniperus tibetica growth declinein Three-River-Source National Park[J]. Journal of Forest and Environment, 2019, 39(4): 386-392.
[4] OKOCHI T, HOSHINO Y, FUJII H, et al. Nondestructive tree-ring measurements for Japanese oak and Japanese beech using micro-focus X-ray computed tomography[J]. Dendrochronologia, 2007, 24(2/3): 155-164.
[5] 王燕凤, 冯海林, 杜晓晨, 等. 一种对年轮图像双边滤波增强的树龄测量方法[J]. 林业工程学报, 2017, 2(5): 109-114.
WANG Y F, FENG H L, DU X C, et al. Improving the tree-age measurement by enhancing the tree-ring image with bilateral filter[J]. Journal of Forestry Engineering, 2017, 2(5): 109-114.
[6] 张露, 郭清宇, 梁静静, 等. 基于DOG算子的年轮图像边缘提取及树龄测量方法[J]. 中原工学院学报, 2019, 30(6): 50-54.
ZHANG L, GUO Q Y, LIANG J J, et al. Edge exteaction and tree age measurement method of annual ring image based on DOG operator[J]. Journal of Zhongyuan University of Technology, 2019, 30(6): 50-54.
[7] FABIJANSKA A, MALGORZATA D. DeepDendro-a tree rings detector based on a deep convolutional neural network[J]. Computers and Electronics in Agriculture, 2018, 150: 353-363.
[8] 宁霄, 赵鹏. 随机森林算法在树木年轮图像分割中的应用[J]. 林业工程学报, 2018, 3(4): 125-130.
NING X, ZHAO P. Image segmentation of tree ring based on the random forest algorithm[J]. Journal of Forestry Engineering, 2018, 3(4): 125-130.
[9] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[J]. Medical Image Computing and Computer-Assisted Intervention, 2015, 9351: 234-241.
[10] FABIJANSKA A, DANEK M, BARNIAK J, et al. Towards automatic tree rings detection in images of scanned wood samples[J]. Computers and Electronics in Agriculture, 2019, 140: 279-289.
[11] 宁霄, 赵鹏. 基于U-Net卷积神经网络的年轮图像分割算法[J]. 生态学杂志, 2019, 38(5): 1580-1588.
NING X, ZHAO P. Segmentation algorithm of annual ring image based on U-Net convolution network[J]. Chinese Journal of Ecology, 2019, 38(5): 1580-1588.
[12] ZHOU Z, RAHMAN S M M, TAJBAKHSH, et al. UNet++: a nested U-Net architecture for medical image segmentation[J]. Deep Learning Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018, 11045: 3-11.
[13] 邢妍妍, 杨丰, 唐宇姣, 等. 融合型UNet++网络的超声胎儿头部边缘检测[J]. 中国图象图形学报, 2020, 25(2): 366-377.
XING Y Y, YANG F, TANG Y J, et al. Ultrasound fetal head edge detection using fusion UNet ++[J]. Journal of Image and Graphics, 2020, 25(2): 366-377.
[14] 荣亚琪, 张丽娟, 崔金利, 等. 基于NODE-UNet++和标记分水岭算法的红细胞图像分割[J]. 液晶与显示, 2022, 37(9): 1190-1198.
RONG Y Q, ZHANG L J, CUI J L, et al. Red blood cell image segmentation based on NODE-UNet++ and marker watershed[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(9): 1190-1198.
[15] LI Z, ZHANG H, LI Z Z, et al. Residual-attention unet++: a nested residual-attention U-NET for medical image segmentation[J]. Applied Sciences, 2022, 12(14): 7149.
[16] 崔少国, 文浩, 张宇楠, 等. 带有注意力机制的OCTA视网膜血管分割方法[J]. 计算机工程与应用, 2023, 59(18): 163-171.
CUI S G, WEN H, ZHANG Y, et al. Segmentation method of retinal vessels in OCTA with attention mechanism[J]. Computer Engineering and Applications, 2023, 59(18): 163-171.
[17] CHI J, ZHANG S, HAN X, et al. MID-UNet: multi-input directional UNet for COVID-19 lung infection segmentation from CT images[J]. Signal Processing: Image Communication, 2022, 108: 116835.
[18] WU J, ZHOU S, ZUO S, et al. U-Net combined with multi-scale attention mechanism for liver segmentation in CT images[J]. BMC Medical Informatics Decision Making, 2021, 21(1): 283.
[19] ZHOU Z W, RAHMAN S M M, NIMA T, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1868.
[20] 侯奕辰, 彭辉, 谢俊章, 等. 改进Unet++在脑肿瘤图像分割的研究[J]. 计算机工程与设计, 2022, 43(6): 1725-1731.
HOU Y C, PENG H , XIE J Z, et al. Research on segmentation of brain tumor image based on improved Unet++[J]. Computer Engineering and Design, 2022, 43(6): 1725-1731.
[21] 段杰, 崔志明, 沈艺, 等. 一种改进FCN的肝脏肿瘤CT图像分割方法[J]. 图学学报, 2020, 41(1): 100-107.
DUAN J, CUI Z M, SHEN Y, et al. A CT image segmentation method for liver tumor by an improved FCN[J]. Journal of Graphics, 2020, 41(1): 100-107.
[22] 杨阿庆, 薛月菊, 黄华盛, 等. 基于全卷积网络的哺乳母猪图像分割[J]. 农业工程学报, 2017, 33(23): 219-225.
YANG A Q, X Y J, H H S, et al. Lactating sow image segmentation based on fully convolutional networks[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 219-225.
[23] 杨蜀秦, 王鹏飞, 王帅, 等. 基于MHSA+DeepLab v3+的无人机遥感影像小麦倒伏检测[J]. 农业机械学报, 2022, 53(8): 213-219.
YANG S Q, WANG P F, WANG S, et al. Detection of wheat lodging in UAV remote sensing images based on Multi-Head Self-Attention DeepLab v3 +[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 213-219. |