[1] CHALLOOB M, GAO Y, BUSCH A, et al. Separable paravector orientation tensors for enhancing retinal vessels[J]. IEEE Transactions on Medical Imaging, 2022, 42(3): 880-893.
[2] CHAUDHURI S, CHATTERJEE S, KATZ N, et al. Detection of blood vessels in retinal images using two-dimensional matched filters[J]. IEEE Transactions on Medical Imaging, 1989, 8(3): 263-269.
[3] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[4] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
[5] AZAD R, AGHDAM E K, RAULAND A, et al. Medical image segmentation review: the success of U-Net[J]. arXiv:2211.14830, 2022.
[6] WANG B, QIU S, HE H. Dual encoding U-Net for retinal vessel segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019: 84-92.
[7] LIAN S, LI L, LIAN G, et al. A global and local enhanced residual U-Net for accurate retinal vessel segmentation[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 18(3): 852-862.
[8] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[9] LI K, QI X, LUO Y, et al. Accurate retinal vessel segmentation in color fundus images via fully attention-based networks[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(6): 2071-2081.
[10] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[11] LI L, VERMA M, NAKASHIMA Y, et al. IterNet: retinal image segmentation utilizing structural redundancy in vessel networks[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020: 3656-3665.
[12] WANG K, ZHANG X, HUANG S, et al. CTF-Net: retinal vessel segmentation via deep coarse-to-fine supervision network[C]//Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging, 2020: 1237-1241.
[13] WU Y, XIA Y, SONG Y, et al. NFN+: a novel network followed network for retinal vessel segmentation[J]. Neural Networks, 2020, 126: 153-162.
[14] GU P, ZHENG H, ZHANG Y, et al. kCBAC-Net: deeply supervised complete bipartite networks with asymmetric convolutions for medical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2021: 337-347.
[15] DING X, GUO Y, DING G, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1911-1920.
[16] WU H, WANG W, ZHONG J, et al. SCS-Net: a scale and context sensitive network for retinal vessel segmentation[J]. Medical Image Analysis, 2021, 70: 102025.
[17] FU H, CHENG J, XU Y, et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J]. IEEE Transactions on Medical Imaging, 2018, 37(7): 1597-1605.
[18] YUAN Y, ZHANG L, WANG L, et al. Multi-level attention network for retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(1): 312-323.
[19] TAN Y, YANG K F, ZHAO S X, et al. Retinal vessel segmentation with skeletal prior and contrastive loss[J]. IEEE Transactions on Medical Imaging, 2022, 41(9): 2238-2251.
[20] 王银宇,孟凡云,王金鹤,等. 改进ASPP及多层次特征语义融合分割方法[J]. 计算机工程与应用, 2023, 59(13):220-228.
WANG Y Y, MENG F Y, WANG J H, et al. Improved ASPP and multilevel feature semantic fusion segmentation method[J]. Computer Engineering and Applications, 2023, 59(13):220-228.
[21] WANG W, ZHONG J, WU H, et al. RVSeg-Net: an efficient feature pyramid cascade network for retinal vessel segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2020: 796-805
[22] FENG S, ZHAO H, SHI F, et al. CPFNet: context pyramid fusion network for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(10): 3008-3018.
[23] 梁礼明, 陈鑫, 余洁, 等. 多尺度注意力细化视网膜分割算法[J]. 计算机工程与应用, 2023, 59(6): 212-220.
LIANG L M, CHEN X, YU J, et al. Multi-scale attention refinement retinal segmentation algorithm[J]. Computer Engineering and Applications, 2023, 59(6):212-220.
[24] YE Y, PAN C, WU Y, et al. MFI-Net: multiscale feature interaction network for retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(9): 4551-4562.
[25] WANG C, XU R, XU S, et al. DA-Net: dual branch transformer and adaptive strip upsampling for retinal vessels segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2022: 528-538.
[26] QU Z, ZHUO L, CAO J, et al. TP-Net: two-path network for retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(4): 1979-1990.
[27] HUANG G, LIU Z, VAN D M L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[28] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[29] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[30] QIN X, DAI H, HU X, et al. Highly accurate dichotomous image segmentation[C]//Proceedings of the European Conference on Computer Vision, 2022: 38-56.
[31] LIU Y, SHEN J, YANG L, et al. ResDO-UNet: a deep residual network for accurate retinal vessel segmentation from fundus images[J]. Biomedical Signal Processing and Control, 2023, 79: 104087.
[32] KANJEE Z, CROWE B, RODMAN A. Accuracy of a generative artificial intelligence model in a complex diagnostic challenge[J]. JAMA:the Journal of the American Medical Association, 2023, 330(1): 78-80. |