Retinal Vessel Segmentation Method Based on Position-Aware Circular Convolution with Multi-Scale Input
JIANG Zhongchuan, WU Yun
1.State Key Laboratory of Public Big Data, Guiyang 550025, China
2.College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
[1] RASMUSSEN M L,BROE R,FRYDKJAER-OLSEN U,et al.Retinal vascular geometry and its association to microvascular complications in patients with type 1 diabetes:the Danish Cohort of Pediatric Diabetes 1987(DCPD1987)[J].Graefe’s Archive for Clinical and Experimental Ophthalmology,2017,255:293-299.
[2] TRIANTAFYLLOU A,AL-DIRI B,ANYFANTI P,et al. 7D.08:detecting hypertensive retinopathy using retinal vascular geometry[J].Journal of Hypertension,2015,33:e102.
[3] DASH J,BHOI N.A thresholding based technique to extract retinal blood vessels from fundus images[J].Future Computing and Informatics Journal,2017,2(2):103-109.
[4] SREEJINI K S,GOVINDAN V K.Improved multiscale matched filter for retina vessel segmentation using PSO algorithm[J].Egyptian Informatics Journal,2015,16(3):253-260.
[5] HASSAN G,EL-BENDARY N,HASSANIEN A E,et al.Retinal blood vessel segmentation approach based on mathematical morphology[J].Procedia Computer Science,2015,65:612-622.
[6] CHENG Y,HU X,WANG J,et al.Accurate vessel segmentation with constrained B-snake[J].IEEE Transactions on Image Processing,2015,24(8):2440-2455.
[7] SULE O O.A survey of deep learning for retinal blood vessel segmentation methods:taxonomy,trends,challenges and future directions[J].IEEE Access,2022,10:38202-38236.
[8] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:3431-3440.
[9] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention-(MICCAI 2015),Munich,Germany,October 5-9,2015:234-241.
[10] ZHOU Z,RAHMAN SIDDIQUEE M M,TAJBAKHSH N,et al.Unet++:a nested u-net architecture for medical image segmentation[C]//4th International Workshop on Deep Learning in Medical Image Analysis and 8th International Workshop on Multimodal Learning for Clinical Decision Support,September 20,2018:3-11.
[11] YUE K,ZOU B,CHEN Z,et al.Retinal vessel segmentation using dense U-net with multiscale inputs[J].Journal of Medical Imaging,2019,6(3):034004.
[12] OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention u-net:learning where to look for the pancreas[J].arXiv:1804.03999,2018.
[13] ZHANG H,HU W,WANG X.Parc-net:position aware circular convolution with merits from convnets and transformer[C]//17th European Conference on Computer Vision,Tel Aviv,Israel,October 23-27,2022.Cham:Springer Nature Switzerland,2022:613-630.
[14] WANG Q,WU B,ZHU P,et al.ECA-net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:11534-11542.
[15] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.
ZHOU F Y,JIN L P,DONG J.Review of convoluntional neural network[J].Chinese Journal of Computers,2017,40(6):1229-1251.
[16] YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[J].arXiv:1511.07122,2015.
[17] DAI J,QI H,XIONG Y,et al.Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,Venice,Oct 22-29,2017.Washington:IEEE Computer Society,2017:764-773.
[18] 刘卫光,刘东,王璐.可变形卷积网络研究综述[J].计算机科学与探索,2023,17(7):1549-1564.
LIU W G,LIU D,WANG L.Survey of deformable convoluntional networks[J].Journal of Frontiers of Computer Science and Technology,2023,17(7):1549-1564.
[19] DENG L,GONG Y,LU X,et al.Focus-enhanced scene text recognition with deformable convolutions[C]//Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications,Chengdu,Dec 6-9,2019.Washington:IEEE Computer Society,2019:1685-1689.
[20] ZHUANG J.LadderNet:multi-path networks based on U-Net for medical image segmentation[J].arXiv:1810. 07810,2018.
[21] ZHOU Y,CHEN Z,SHEN H,et al.A refined equilibrium generative adversarial network for retinal vessel segmentation[J].Neurocomputing,2021,437:118-130.
[22] GUO S.CSGNet:cascade semantic guided net for retinal vessel segmentation[J].Biomedical Signal Processing and Control,2022,78:103930.
[23] HUSSAIN S,GUO F,LI W,et al.DilUnet:a U-net based architecture for blood vessels segmentation[J].Computer Methods and Programs in Biomedicine,2022,218:106732.
[24] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[25] WOO S,PARK J,LEE J Y,et al.Cbam:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:3-19.
[26] OWEN C G,RUDNICKA A R,MULLEN R,et al.Measuring retinal vessel tortuosity in 10-year-old children:validation of the computer-assisted image analysis of the retina(CAIAR) program[J].Investigative Ophthalmology & Visual Science,2009,50(5):2004-2010.
[27] STAAL J,ABRàMOFF M D,NIEMEIJER M,et al.Ridge-based vessel segmentation in color images of the retina[J].IEEE Transactions on Medical Imaging,2004,23(4):501-509.
[28] 李兰兰,张孝辉,牛得草,等.深度学习在视网膜血管分割上的研究进展[J].计算机科学与探索,2021,15(11):2063-2076.
LI L L,ZHANG X H,NIU D C,et al.Research progress of deep learning on retinal vessel segmentation[J].Journal of Frontiers of Computer Science and Technology,2021,15(11):2063-2076.
[29] LI L,VERMA M,NAKASHIMA Y,et al.Iternet:retinal image segmentation utilizing structural redundancy in vessel networks[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,2020:3656-3665.
[30] YANG D,LIU G,REN M,et al.A multi-scale feature fusion method based on u-net for retinal vessel segmentation[J].Entropy,2020,22(8):811.
[31] JIN Q,MENG Z,PHAM T D,et al.DUNet:a deformable network for retinal vessel segmentation[J].Knowledge-Based Systems,2019,178:149-162.
[32] ZHANG T,LI J,ZHAO Y,et al.Mc-unet multi-module concatenation based on u-shape network for retinal blood vessels segmentation[J].arXiv:2204.03213,2022.