Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (20): 262-273.DOI: 10.3778/j.issn.1002-8331.2310-0208
• Network, Communication and Security • Previous Articles Next Articles
CUI Xuelian, DONG Haitao
Online:
2024-10-15
Published:
2024-10-15
崔雪莲,董海涛
CUI Xuelian, DONG Haitao. Research on Social Network Public Opinion Control Strategy Based on Key Node Identification[J]. Computer Engineering and Applications, 2024, 60(20): 262-273.
崔雪莲, 董海涛. 基于关键节点识别的社交网络舆情控制策略研究[J]. 计算机工程与应用, 2024, 60(20): 262-273.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2310-0208
[1] 汪亭亭, 梁宗文, 张若曦. 基于信息熵与迭代因子的复杂网络节点重要性评价方法[J]. 物理学报, 2023, 72(4): 337-347. WANG T T, LIANG Z W, ZHANG R X. Importance evaluation method of complex network nodes based on information entropyand iteration factor[J]. Acta Physica Sinica, 2023, 72(4): 337-347. [2] 侯艳辉, 孟帆, 王家坤, 等. 后真相时代考虑信息熵的网民观点演化与舆情研判引导研究[J]. 情报杂志, 2022, 41(7): 116-123. HOU Y H, MENG F, WANG J K, et al. Evolution of netizens opinions, publics judgment and guidance in the post-truth era considering information entropy[J]. Journal of Intelligence, 2022, 41(7): 116-123. [3] 魏莹, 刘冠, 李锋. 线上社交网络上信息扩散中“隐形”关键节点的识别及影响力评价[J]. 情报科学, 2018, 36(3): 138-143. WEI Y, LIU G, LI F. Recognizing and influence evaluating of the “lurkers” in information diffusion on social network platform[J]. Information Science, 2018, 36(3): 138-143. [4] 顾洁, 王筱纶, 胡安安. 社交网络信息竞争扩散的关键节点策略研究[J]. 情报科学, 2020, 38(3): 78-86. GU J, WANG X L, HU A A. Seeding strategy of competitive diffusion in social network[J]. Information Science, 2020, 38(3): 78-86. [5] 魏莹, 李锋. 基于主路径分析的关键节点识别与谣言扩散抑制研究[J]. 情报科学, 2018, 36(6): 13-19. WEI Y, LI F. The study of key nodes identification for restraining rumor propagation based on main path analysis[J]. Information Science, 2018, 36(6): 13-19. [6] 蒋侃, 唐竹发, 隋浩. 基于微博信息扩散质量的网络舆情关键节点识别[J]. 情报科学, 2016, 34(7): 64-69. JIANG K, TANG Z F, SUI H. Research on identifing key nodes of network public opinion based on the quality of micro-blog information diffusion[J]. Information Science, 2016, 34(7): 64-69. [7] 王曰芬, 王一山, 杨洁. 基于社区发现和关键节点识别的网络舆情主题发现与实证分析[J]. 图书与情报, 2020(5): 48-58. WANG Y F, WANG Y S, YANG J. Topic discovery and empirical analysis of network public opinion based on community detection and key node identification[J]. Library & Information, 2020(5): 48-58. [8] 汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京: 高等教育出版社, 2012. WANG X F, LI X, CHEN G R. Network science an introduction[M]. Beijing: Higher Education Press, 2012. [9] 席耀一, 高 鑫, 王小明, 等. 基于ETM模型的中亚国家“一带一路”网络舆情热点监测[J]. 情报杂志, 2020, 39(11): 82-89. Ⅺ Y Y, GAO X, WANG X M, et al. Detection of hot spots of “belt and road” network public opinion in central Asian countries based on ETM model[J]. Journal of Intelligence, 2020, 39(11): 82-89. [10] KITSAK M, GALLOS L K, HAVLIN S. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6(11): 888-893. [11] ZENG A, ZHANG C. Ranking spreaders by decomposing complex networks[J]. Physics Letters A, 2013, 377(14): 1031-1035. [12] CHEN D, LU L, SHANG M. Identifying influential nodes in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391(4): 1777-1787. [13] 姚月娇, 刘向, 余博文. 弱连接视角下的高影响力节点识别[J]. 现代情报, 2022, 42(9): 58-67. YAO Y J, LIU X, YU B W. High-influence node recognition from the perspective of weak ties[J]. Journal of Modern Information, 2022, 42(9): 58-67. [14] YU E, WANG Y, FU Yl. Identifying critical nodes in complex networks via graph convolutional networks[J]. Knowledge-Based Systems, 2020, 198: 105893. [15] WANDELT S, SHI X , SUN X . Complex network metrics: can deep learning keep up with tailor-made reference algorithms?[J]. IEEE Access?, 2020, 8: 68114-68123. [16] BONACICH P. Factoring and weighting approaches to status scores and clique identification[J]. Journal of Mathematical Sociology, 1972, 2(1): 113-120. [17] 刘迪, 张会来. 网络舆情治理中意见领袖舆论引导的研究热点和前沿探析[J]. 现代情报, 2020, 40(9): 144-155. LIU D, ZHANG H L. Research hotspots and frontier analysis of opinion leaders public opinion guidance in the governance of network public opinion[J]. Journal of Modern Information, 2020, 40(9): 144-155. [18] 胡钢, 卢志宇, 王乐萌, 等. 基于复杂网络多阶邻域贡献度的节点重要性序结构辨识[J]. 电子学报, 2023, 51(7): 1957-1963. HU G, LU Z Y, WANG L M, et al. Identification of node importance order structure based on multi-order neighborhood contribution of complex network[J]. Acta Electronica Sinica, 2023, 51(7): 1957-1963. [19] 庄文英, 许英姿, 任俊玲, 等. 突发事件舆情演化与治理研究--基于拓展多意见竞争演化模型[J]. 情报杂志, 2021, 40(12): 127-134. ZHUANG W Y, XU Y Z, REN J L, et al. Research on the evolution and governance of public opinion on emergencies-based on expanded SEInR model[J]. Journal of Intelligence, 2021, 40(12): 127-134. [20] 阮逸润, 老松杨, 汤俊, 等. 基于引力方法的复杂网络节点重要度评估方法[J]. 物理学报, 2022, 71(17): 298-309. RUAN Y R, LAO S Y, TANG J, et al. Node importance ranking method in complex network based on gravity method[J]. Acta Physica Sinica, 2022, 71(17): 298-309. [21] 吴亚丽, 任远光, 董昂, 等. 基于邻域K-shell分布的关键节点识别方法[J]. 计算机工程与应用, 2024, 60(2): 87-95. WU Y L, REN Y G, DONG A, et al. Key nodes identification method based on neighborhood K-shell distribution[J]. Computer Engineering and Applications, 2024, 60(2): 87-95. [22] 钟磊, 宋香荣, 孙瑞娜. 基于LeaderRank的意见领袖发现模型及其应用[J]. 情报杂志, 2021, 40(4): 194-199. ZHONG L, SONG X R, SUN R N. Opinion leader discovery model based on LeaderRank and its application[J]. Journal of Intelligence, 2021, 40(4): 194-199. [23] 王环, 朱敏. 基于点权的混合K-shell关键节点识别方法[J]. 华东师范大学学报 (自然科学版), 2019(3): 101-109. WANG H, ZHU M. Vital nodes identification by the hybrid K-shell method based on vertex strength[J]. Journal of East China Normal University (Natural Science), 2019(3): 101-109. [24] 熊才权, 古小惠, 吴歆韵. 基于K-shell位置和两阶邻居的复杂网络节点重要性评估方法[J]. 计算机应用研究, 2023, 40(3): 738-742. XIONG C Q, GU X H, WU X Y. Evaluation method of node importance in complex networks based on K-shell position and neighborhood within two steps[J]. Application Research of Computers, 2023, 40(3): 738-742. [25] FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1): 35-41. [26] LATORA V, MARCHIORI M. Efficient behavior of small-world networks[J]. Physical Review Letters, 2001, 87(19): 198701. [27] BURT R S. Structural holes: the social structure of competition[M]. Cambridge: Harvard University Press, 2009. [28] 苏晓萍, 宋玉蓉. 利用邻域“结构洞”寻找社会网络中最具影响力节点[J]. 物理学报, 2015, 64(2): 5-15. SU X P, SONG Y R. Leveraging neighborhood “structural holes” to identifying key spreaders in social networks[J]. Acta Physica Sinica, 2015, 64(2): 5-15. [29] RUAN Y, LAO S, XIAO Y. Identifying influence of nodes in complex networks with coreness centrality: decreasing the impact of densely local connection[J]. Chinese Physics Letters, 2016, 33(2): 028901. [30] 李钢, 王聿达, 崔蓉. KiC: 一种结合“结构洞” 约束值与K壳分解的社交网络关键节点识别算法[J]. 现代情报, 2020, 40(12): 27-32. LI G, WANG Y D, CUI R. KiC: an extended k-shell decomposition based on improved network constraint coefficient[J]. Journal of Modern Information, 2020, 40(12): 27-32. [31] WANG M, LI W C, GUO Y N, et al. Identifying influential spreaders in complex networks based on improved k-shell method[J]. Physical A, 2020, 554: 124229. [32] XU X, ZHU C, WANG Q. Identifying critical nodes in complex networks via graph convolutional networks[J]. Knowledge-Based Systems, 2020, 198: 105893. [33] 杨松青, 蒋沅, 童天驰, 等. 基于Tsallis熵的复杂网络节点重要性评估方法[J]. 物理学报, 2021, 70(21): 267-278. YANG S Q, JIANG R, TONG T C. A method for evaluating the importance of nodes in complex network based on Tsallis entropy[J]. Acta Physica Sinica, 2021, 70(21): 267-278. [34] 陈俊华, 边宅安, 李佳慧, 等. 基于相对熵的节点影响力测量方法[J]. 计算机科学, 2018, 45(11): 292-298. CHEN J H, BIAN Z A, LI J H, et al. Measuring method of node influence based on relative entropy[J]. Computer Science, 2018, 45(11): 292-298. [35] 周丽娜, 常笑, 胡枫. 利用邻接结构熵确定超网络关键节点[J]. 计算机工程与应用, 2022, 58(8): 76-82. ZHOU L N, CHANG X, HU F. Using adjacent structure entropy to determine vital nodes of hypernetwork[J]. Computer Engineering and Applications, 2022, 58(8): 76-82. [36] 龚志豪, 蒋沅, 代冀阳, 等. 基于交叉熵的节点重要性排序算法[J]. 电子科技大学学报, 2023, 52(6): 945-953. GONG Z H, JIANG R, DAI J Y, et al. Node importance ranking algorithm based on cross entropy[J]. Journal of University of Electronic Science and Technology of China, 2023, 52(6): 945-953. [37] 胡钢, 徐翔, 高浩. 基于邻接信息熵的网络节点重要性识别算法[J]. 系统工程理论与实践, 2018, 40(3): 715-723. HU G, XU X, GAO H. Node importance recognition algorithm based on adjacency information entropy in networks[J]. Systems Engineering-Theory & Practice, 2018, 40(3): 715-723. [38] 胡钢, 牛琼, 许丽鹏, 等. 基于网络超链接信息熵的节点重要性序结构演化建模分析[J]. 电子学报, 2022, 50(11): 2638-2644. HU G, NIU Q, XU L P. The model to analyses of node importance order structure evolution based on network hyperlink information entropy[J]. Acta Electronica Sinica, 2022, 50(11): 2638-2644. [39] 洪成, 蒋沅, 严玉为, 等. 基于层间邻域信息熵的时序网络节点重要性评估方法[J]. 复杂系统与复杂性科学, 2024, 21(1): 20-27. HONG C, JIANG R, YAN Y W. A method of evaluating importance of nodes in temporal network based on inter-layer neighborhood information entropy[J]. Complex Systems and Complexity Science, 2024, 21(1): 20-27. [40] 聂琦, 张鸫, 江昊. 基于情绪信息熵的网络舆情传播模型研究[J]. 武汉大学学报 (工学版), 2022, 55(7): 725-731. NIE Q, ZHANG D, JIANG H. Research on internet public opinion transmission model with emotional information entropy[J]. Engineering Journal of Wuhan University, 2022, 55(7): 725-731. [41] 郭程远, 陈鸿昶, 王庚润, 等. 基于迭代K-shell和改进信息熵的节点重要性排序算法[J]. 信息工程大学学报, 2022, 23(5): 556-562. GUO C Y, CHEN H C, WANG G R, et al. Node importance ranking algorithm based on iterative k-shell and improved information entropy[J]. Journal of Information Engineering University, 2022, 23(5): 556-562. [42] ZACHARY W W. An information flow model for conflict and fission in small groups1[J]. Journal of Anthropological Research, 1976, 33(4): 452-473. [43] LUSSEAU D, SCHNEISER K, BOISSEAU O. The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations[J]. Behavioral Ecology and Sociobiology, 2003, 54(4) : 396-405. [44] GIRVAN M, NEWMAN M E. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99 (12): 7821-7826. [45] NEWMAN M E. Finding community structure in networks using the eigenvectors of matrices[J]. Physical Review E, 2006, 74 (3): 036104. |
[1] | WU Yali, REN Yuanguang, DONG Ang, ZHOU Aoran, WU Xuejin, ZHENG Shuailong. Key Nodes Identification Method Based on Neighborhood K-shell Distribution [J]. Computer Engineering and Applications, 2024, 60(2): 87-95. |
[2] | LIU Xin, WANG Haiwen, SUN Zhijian, YANG Dawei, PANG Mingjiang. Research on Tracing Major Public Opinion Events Based on Double-Layer Blockchain [J]. Computer Engineering and Applications, 2023, 59(23): 263-272. |
[3] | CHEN Shuqin, WANG Xiaoli, ZHAO Laijun, ZHANG Jing, QIAN Mengdi. Model of Online Public Opinion Dissemination of Negative Corporate Events Based on Cross-Platform Networks [J]. Computer Engineering and Applications, 2023, 59(19): 220-228. |
[4] | XIA Ying, ZHANG Jinfeng. POI Recommendation Fusing Social Relations and Local Geographic Factors [J]. Computer Engineering and Applications, 2021, 57(15): 133-139. |
[5] | YU Lingfei, GONG Haigang. Cooperation and Contribution Based Selfish Routing Protocol for Mobile Social Networks [J]. Computer Engineering and Applications, 2021, 57(1): 134-140. |
[6] | ZHAO Liang, CHEN Pinghua, LIAO Weiping. Social Recommendation Based on Latent Factors of Social Network Users [J]. Computer Engineering and Applications, 2020, 56(24): 169-174. |
[7] | PIAO Yangheran, CUI Xiaohui. Review on User Privacy Inference and Protection in Social Networks [J]. Computer Engineering and Applications, 2020, 56(19): 1-12. |
[8] | WEI Nianwei, JIANG Yuanyuan, LIU Yanbin, XIN Yuanfang, HONG Yan. Method of PRM Path Optimization Based on Key Nodes and Smooth Processing [J]. Computer Engineering and Applications, 2020, 56(16): 118-123. |
[9] | LU Lu1, ZHU Fuxi2, GAO Rong2, ZHU Lin1. Point of interest joint recommendation method based on user-content topic model [J]. Computer Engineering and Applications, 2018, 54(4): 154-159. |
[10] | ZHOU Ketao, LIU Weiguo, SHI Ronghua. K-degree anonymity scheme for preserving privacy based on similarity of neighborhood degree sequence [J]. Computer Engineering and Applications, 2017, 53(19): 102-108. |
[11] | HUANG Li1,2, TAN Wen’an1,3. Survey on process mining in complex evolving social networks [J]. Computer Engineering and Applications, 2017, 53(16): 18-28. |
[12] | ZHANG Huibing1, HE Caimei1, HU Xiaoli1, PEI Dongliang2. Analysis of node influence by fusing behavior and semantics [J]. Computer Engineering and Applications, 2017, 53(11): 151-154. |
[13] | WANG Chaobin1, MAO Qianren2, XIANG Ting3, DENG Chao2. Mobile cellular automata of individualized network public opinion clustering model and simulation [J]. Computer Engineering and Applications, 2016, 52(19): 122-127. |
[14] | LIU Yan, PAN Shanliang. Personalized travel recommendation technology based on friendship of LBSN [J]. Computer Engineering and Applications, 2015, 51(8): 117-122. |
[15] | CHEN Yangrong, XING Guanglin. Research on privacy protection mechanism in distributed online social networks [J]. Computer Engineering and Applications, 2014, 50(22): 118-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||