[1] 焦李成, 王爽, 侯彪. SAR图像理解与解译研究进展[J]. 电子学报, 2005, 33(B12): 2423-2434.
JIAO L C, WANG S, HOU B. A review of SAR images understanding and interpretation[J]. Acta Electronica Sinica, 2005, 33(B12): 2423-2434.
[2] VACHON P W, THOMAS S J, CRANTON H R, et al. Validation of ship detection by the RADARSAT synthetic aperture radar and the ocean monitoring workstation[J]. Canadian Journal of Remote Sensing, 2000, 26(3): 200-212.
[3] NILSSON M, VANLAERE J V, ZIEMK T, et al. Extracting rules from expert operators to support situation awareness in maritime surveillance[C]//IEEE 11th International Conference on Information Fusion, Cologne, Germany, 2008: 1-8.
[4] 种劲松, 欧阳越, 朱敏慧. 合成孔径雷达图像海洋目标检测[M]. 北京: 海洋出版社, 2006: 553-556.
ZHONG J S, OUYANG Y, ZHU M H. Ocean ship detection in SAR image[M]. Beijing: China Ocean Press, 2006: 553-556.
[5] FUHRMANN D R, KELL E J, NITZBERG R. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216.
[6] TELLO M, LOPEZ-MARTINEZ C, MALLORQUI J J. A novel algorithm for ship detection in SAR imagery based on the wavelet transform[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 201-205.
[7] 唐沐恩, 林挺强, 文贡坚. 遥感图像中舰船检测方法综述[J]. 计算机应用研究, 2011, 28(1): 29-36.
TANG M E, LIN T Q, WEN G J. Overview of ship detection methods in remote sensing images[J]. Application Research of Computers, 2011, 28(1): 29-36.
[8] 徐鹏. 基于CNN的SAR舰船检测及其在移动终端的应用[D]. 郑州: 河南大学, 2017: 3-4.
XU P. SAR ship detection based on CNN and its application in mobile terminal[D]. Zhengzhou: Henan university, 2017: 3-4.
[9] CHEN P, LI X N, ZHENG G, et al. A new method for extracting ship motion parameters in radarsat-2 SAR imagery[J]. International Journal of Remote Sensing, 2019, 40(14): 5617-5634.
[10] 李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40(9): 1953-1959.
LI J W, QU C W, PENG S J, et al. SAR ship detection based on convolutional neural network[J]. Journal of Systems Enginering and Electronics, 2018, 40(9): 1953-1959.
[11] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[12] 白玉, 姜东民, 裴加军, 等. 改进的ELU卷积神经网络在SAR图像舰船检测中的应用[J]. 测绘通报, 2018(1): 125-128.
BAI Y, JIANG D M, PEI J J, et al. Application of an improved ELU convolution neural network in the SAR image ship detection[J]. Bulletin of Surveying and Mapping, 2018(1): 125-128.
[13] ZHAO Y, ZHAO L, XIONG B, et al. Attention receptive pyramid network for ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2738-2756.
[14] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[15] ZHANG T, ZHANG X, KE X. Quad-FPN: a novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13(14): 2771.
[16] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. arXiv:1503.02531,2015.
[17] CHEN G, CHOI W, YU X, et al. Learning efficient object detection models with knowledge distillation[C]//Advances in Neural Information Processing Systems, 2017, 30: 742-751.
[18] NGUYEN C H, NGUYEN T C, TANG T N, et al. Improving object detection by label assignment distillation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 1005-1014.
[19] LI G, LI X, WANG Y, et al. Knowledge distillation for object detection via rank mimicking and prediction-guided feature imitation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 1306-1313.
[20] SHU C, LIU Y, GAO J, et al. Channel-wise knowledge distillation for dense prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 5311-5320.
[21] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[22] EVERINGHAM M, VAN GOOL L, WILLIAMS C K L, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
[23] CHEN S Q, WANG W, ZHAN R H, et al. A lightweight, arbitrary-oriented SAR ship detector via feature map-based knowledge distillation[J]. Journal of Radars, 2023, 12(1): 140-153.
[24] WANG J, SUN K, CHENG T, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(10): 3349-3364.
[25] ROMERO A, BALLAS N, KAHOU S E, et al. Fitnets: hints for thin deep nets[J]. arXiv:1412.6550, 2014.
[26] CHEN S, ZHAN R, WANG W, et al. Learning slimming SAR ship object detector through network pruning and knowledge distillation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 1267-1282.
[27] GUO J, HAN K, WANG Y, et al. Distilling object detectors via decoupled features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2154-2164.
[28] TORRALBA A. Contextual priming for object detection[J]. International Journal of Computer Vision, 2003, 2: 169-191.
[29] ZHANG L, MA K. Improve object detection with feature-based knowledge distillation: towards accurate and efficient detectors[C]//International Conference on Learning Representations, 2020: 1-3.
[30] MACKAY D J C. Information theory, inference, and learning algorithms[M]. Cambridge: Cambridge University Press, 2003.
[31] CAO Y, XU J R, STEPHEN LIN, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
[32] HU H, GU J Y, ZHANG Z, et al. Relation networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3588-3597.
[33] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
[34] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 815-823.
[35] BOUTROS F, DAMER N, KIRCHBUCHNER F, et al. Self-restrained triplet loss for accurate masked face recognition[J]. Pattern Recognition, 2022, 124: 108473.
[36] WEI S, ZENG X, QU Q, et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234-120254.
[37] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[38] ZHOU H, SONG L, CHEN J, et al. Rethinking soft labels for knowledge distillation: a bias-variance tradeoff perspective[C]//International Conference on Learning Representations (ICLR), 2021: 1-7. |