[1] READING C, HARAKEH A, CHAE J, et al. Categorical depth distribution network for monocular 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8555-8564.
[2] DING M, HUO Y, YI H, et al. Learning depth-guided convolutions for monocular 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 1000-1001.
[3] LU Y, MA X, YANG L, et al. Geometry uncertainty projection network for monocular 3D object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3111-3121.
[4] KU J, PON A, WASLANDER S. Monocular 3D object detection leveraging accurate proposals and shape reconstruction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 11867-11876.
[5] LI B, OUYANG W, SHENG L, et al. GS3D: an efficient 3D object detection framework for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1019-1028.
[6] CHEN Y, TAI L, SUN K, et al. Monopair: monocular 3D object detection using pairwise spatial relationships[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12093-12102.
[7] CHABOT F, CHAOUCH M, RABARISOA J, et al. Deep manta: a coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2040-2049.
[8] LI P, ZHAO H, LIU P, et al. RTM3D: real-time monocular 3D detection from object keypoints for autonomous driving[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 644-660.
[9] MA X, ZHANG Y, XU D, et al. Delving into localization errors for monocular 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4721-4730.
[10] ZHOU X, WANG D, KRAHENBUHL P. Objects as points[J]. arxiv:1904.07850, 2019.
[11] ZHANG Y, LU J, ZHOU J. Objects are different: flexible monocular 3D object detection[C]//Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition, 2021: 3289-3298.
[12] LIU Z, WU Z, TOTH R. Smoke: single-stage monocular 3D object detection via keypoint estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 996-997.
[13] LI Y, YAO T, PAN Y, et al. Contextual transformer networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2): 1489-1500.
[14] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[15] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[16] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012: 3354-3361.
[17] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[18] MOUSAVIAN A, ANGUELOV D, FLYNN J, et al. 3D bounding box estimation using deep learning and geometry[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7074-7082.
[19] SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: Waymo open dataset[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2446-2454.
[20] CAESAR H, BANKITI V, LANG A, et al. nuScenes: a multi-modal dataset for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11621-11631.
[21] QIN Z, WANG J, LU Y. MonoGRNet: a general framework for monocular 3D object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(9) :5170-5184.
[22] BRAZIL G, LIU X. M3D-RPN: monocular 3D region proposal network for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
[23] LIU L, LU J, XU C, et al. Deep fitting degree scoring network for monocular 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1057-1066. |