[1] 蔚瑞, 谢卓辰, 刘洁, 等. 基于图像超分辨重建的低轨卫星频谱感知数据空间分辨率提高方法[J]. 中国科学院大学学报, 2022, 39(3): 386-392.
WEI R, XIE Z C, LIU J, et al. Spatial resolution improvement of spectrum sensing data of LEO satellite based on image super-resolution[J]. Journal of the University of Chinese Academy of Sciences, 2022, 39(3): 386-392.
[2] GENDY G, MOHAMMED H, SABOR N, et al. A deep pyramid attention network for single image super-resolution[C]//2021 9th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC), 2021: 4-19.
[3] 吴靖, 叶晓晶, 黄峰, 等. 基于深度学习的单帧图像超分辨率重建综述[J]. 电子学报, 2022, 50(9): 2265-2294.
WU J, YE X J, HUANG F, et al. A review of single image super?resolution reconstruction based on deep learning[J]. Acta Electronica Sinica, 2022, 50(9): 2265-2294.
[4] DONG C, CHEN C L, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307.
[5] CHEN Y, LIU L, PHONEVILAY V, et al. Image super-resolution reconstruction based on feature map attention mechanism[J]. Applied Intelligence, 2021, 51: 4367-4380.
[6] KIM J, LEE J K, LEE K M. Accurate image super resolution using very deep convolutional networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 1646-1654.
[7] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
[8] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017: 151-158.
[9] GENDY G, SABOR N, HOU J C, et al. Balanced spatial feature distillation and pyramid attention network for lightweight image super-resolution[J]. Neurocomputing, 2022, 509: 157-166.
[10] HUANG J B, SINGH A, AHUJA N. Single image super resolution from transformed self-exemplars[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 23-32.
[11] 杨记鑫, 胡伟霞, 赵杰, 等. 基于生成对抗网络的图像超分辨算法[J]. 计算机技术与发展, 2022, 32(4): 57-62.
YANG J X, HU W X, ZHAO J, et al. Image super resolution algorithm based on generative countermeasure network [J]. Computer Technology and Development, 2022, 32(4): 57-62.
[12] LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 19-27.
[13] WANG X T, YU K, WU S X, et al. ESRGAN: enhanced super-resolution generative adversarial networks[J]. arXiv:1809.00219, 2018.
[14] KONG F, LI M, LIU D, et al. Residual local feature network for efficient super-resolution[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022: 766-776.
[15] SUN L, LIU K, LIU Z, et al. A lightweight multi-scale feature integration network for real-time single image super-resolution[J]. Real-Time Image Process, 2021, 18(4): 1221-1234.
[16] DU Z, LIU D, LIU J, et al. Fast and memory-efficient network towards efficient image super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2022: 817-823.
[17] SUN L, LIU Z, SUN X, et al. Lightweight image super-resolution via weighted multi-scale residual network[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(7): 1271-1280.
[18] GENDY G, HE G H, SABOR N. Lightweight image super-resolution based on deep learning: state-of-the-art and future directions[J]. Information Fusion, 2023, 94: 284-310.
[19] MANDY L, DIETLIND Z, OLAF H, et al. Applications of norms and their smooth approximations for gradient based learning vector quantization[C]//22th European Symposium on Artificial Neural Networks (ESANN 2014), Bruges, Belgium, April 23-25, 2014: 1-13.
[20] MA N N, ZHANG X Y, LIU M, et al. Activate or not: learning customized activation[J]. Proceedings of the IEEE, 2021, 10(4): 550-559.
[21] PRAJIT R, BARRET Z, QUOC V L. Searching for activation functions[J]. arXiv:1710.05941, 2017.
[22] LIU S, HUANG D, WANG Y. Receptive field block net for accurate and fast object detection[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 385-400.
[23] 杨才东, 李承阳, 李忠博, 等. 深度学习的图像超分辨率重建技术综述[J]. 计算机科学与探索, 2022, 16(9): 1990-2010.
YANG C D, LI C Y, LI, Z B, et al. Review of image super-resolution reconstruction algorithms based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010.
[24] BLAU Y, MICHAELI T. The perception-distortion tradeoff [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 6228-6237.
[25] YOCHAI B, ROEY M, RADU T, et al. Challenge on perceptual image super resolution[J]. arXiv:1809.07517, 2018. |