[1] 杨锦帆, 王晓强, 林浩, 等. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67.
YANG J F, WANG X Q, LIN H, et al. Review of one-stage vehicle detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2022, 58 (7): 55-67.
[2] 李科岑, 王晓强, 林浩, 等. 深度学习中的单阶段小目标检测方法综述[J]. 计算机科学与探索, 2022, 16(1): 41-58.
LI K C, WANG X Q, LIN H, et al. Survey of one-stage small object detection methods in deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (1): 41-58.
[3] 史彩娟, 张卫明, 陈厚儒, 等. 基于深度学习的显著性目标检测综述[J]. 计算机科学与探索, 2021, 15(2): 219-232.
SHI C J, ZHANG W M, CHEN H R, et al. Survey of salient object detection based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15 (2): 219-232.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[6] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[7] ZHOU Y, LIU L, SHAO L, et al. Fast automatic vehicle annotation for urban traffic surveillance[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(6): 1973-1984.
[8] YUAN X, SU S, CHEN H. A graph-based vehicle proposal location and detection algorithm[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(12): 3282-3289.
[9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016: 21-37.
[10] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[12] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[13] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[14] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[15] 王琳毅, 白静, 李文静, 等. YOLO系列目标检测算法研究进展[J]. 计算机工程与应用, 2023, 59(14): 15-29.
WANG L Y, BAI J, LI W J, et al. Research progress of YOLO series target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(14): 15-29.
[16] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer vision, 2021: 2778-2788.
[17] 申铉京, 李涵宇, 黄永平, 等. 基于自适应多尺度特征融合网络的车辆检测方法[J/OL]. 电子学报: 1-9[2023-08-24]. http://kns.cnki.net/kcms/detail/11.2087.tn.20230330.1000.
056.html.
SHEN X J, LI H Y, HUANG Y P, et al. A vehicle detection method based on adaptive multi-scale feature fusion network[J/OL]. Acta Electronica Sinica: 1-9[2023-08-24]. http://kns.cnki.net/kcms/detail/11.2087.tn.20230330.1000.
056. html.
[18] ZHANG Z, LU X, CAO G, et al. ViT-YOLO: transformer-based YOLO for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2799-2808.
[19] LIU Z, GAO G, SUN L, et al. HDNet: high-resolution detection network for small objects[C]//2021 IEEE International Conference on Multimedia and Expo (ICME), 2021: 1-6.
[20] LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[J]. arXiv:2112.05561, 2021.
[21] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[22] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[J]. arXiv:2303. 03667, 2023.
[23] WANG C Y, MARK LIAO H Y, CHEN P Y, et al. Enriching variety of layer-wise learning information by gradient combination[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
[24] WANG J, CHEN K, XU R, et al. Carafe: content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 3007-3016.
[25] ZHU X, HU H, LIN S, et al. Deformable convnets v2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9308-9316.
[26] 刘卫光, 刘东, 王璐. 可变形卷积网络研究综述[J]. 计算机科学与探索, 2023, 17(7): 1549-1564.
LIU W G, LIU D, WANG L. Survey of deformable convolutional networks[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1549-1564.
[27] DAI X, CHEN Y, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7373-7382.
[28] LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote sensing, 2020, 159: 296-307.
[29] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983.
[30] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 618-626. |