[1] 黄华. 分析地下车库火灾过程及消防措施[J]. 建材与装饰, 2020(19): 144.
HUANG H. Analyze the fire process of underground garage and fire control measures[J]. Construction Materials & Decoration, 2020(19): 144.
[2] 应于波. 地下车库的消防安全隐患及防火措施[J]. 消防界(电子版), 2021, 7(21): 84.
YING Y B. Fire safety hidden trouble and fire prevention measures of underground garage[J]. Fire Protection (Electronic Version), 2021, 7(21): 84.
[3] HONG W B, PENG J W, CHEN C Y. A new image-based real-time flame detection method using color analysis[C]//Proceedings of the IEEE International Conference on Networking, Sensing and Control, 2005: 100-105.
[4] WU S X, ZHANG L B. Using popular object detection methods for real time forest fire detection[C]//Proceedings of the 2018 11th International Symposium on Computational Intelligence and Design, 2018: 280-284.
[5] HOSSEINI A, HASHEMZADEH M, FARAJZADEH N. UFS-Net: a unified flame and smoke detection method for early detection of fire in video surveillance applications using CNNs[J]. Journal of Computational Science, 2022, 61: 101638.
[6] 回天, 哈力旦·阿布都热依木, 杜晗. 结合Faster R—CNN的多类型火焰检测[J]. 中国图象图形学报, 2019, 24(1): 73-83.
HUI T, HALIDAN A, DU H. Multi-type flame detection combined with Faster R-CNN[J]. Journal of Image and Graphics, 2019, 24(1): 73-83.
[7] 郑远攀, 许博阳, 王振宇. 改进的YOLOv5烟雾检测模型[J]. 计算机工程与应用, 2023, 59(7): 214-221.
ZHENG Y P, XU B Y, WANG Z Y. Improved YOLOv5 smoke detection model[J]. Computer Engineering and Applications, 2023, 59(7): 214-221.
[8] 王一旭, 肖小玲, 王鹏飞, 等. 改进YOLOv5s的小目标烟雾火焰检测算法[J]. 计算机工程与应用, 2023, 59(1): 72-81.
WANG Y X, XIAO X L, WANG P F, et al. Improved YOLOv5s small target smoke and fire detection algorithm[J]. Computer Engineering and Applications, 2023, 59(1): 72-81.
[9] ZHANG H, ZU K K, LU J, et al. EPSANet: an efficient pyramid squeeze attention block on convolutional neural network[J]. arXiv:2105.14447, 2021.
[10] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 11531-11539.
[11] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[12] XU X Z, JIANG Y Q, CHEN W H, et al. DAMO-YOLO: a report on real-time object detection design[J]. arXiv:2211.
15444, 2023.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[14] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13728-13737.
[15] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[16] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS: improving object detection with one line of code[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 5562-5570.
[17] Ultralytics. YOLOv5[DB/OL]. (2020-06-26)[2023-06-24]. https://github.com/ultralytics/YOLOv5.
[18] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[19] WANG C Y, LIAO H, YEH I H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019: 1571-1580.
[20] 梁循, 翁小林, 李嘉伟, 等. 基于改进YOLOv5的安全帽检测算法[J]. 科技创新与应用, 2023, 13(6): 81-84.
LIANG X, WENG X L, LI J W, et al. Helmet detection algorithm based on improved YOLOv5[J]. Technology Innovation and Application, 2023, 13(6): 81-84.
[21] 杨国亮, 杨浩, 余帅英, 等. 改进YOLOv5的交通标志检测算法[J]. 计算机工程与应用, 2023, 59(10): 262-269.
YANG G L, YANG H, YU S Y, et al. Improved YOLOv5 traffic sign detection algorithm[J]. Computer Engineering and Applications, 2023, 59(10): 262-269.
[22] LUO J H. Automatic identification of integrated circuits based on YOLOv5[J]. Journal of Physics: Conference Series, 2023, 2450(1): 012039.
[23] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[24] PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module[J]. arXiv:1807.06514, 2018.
[25] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[J]. arXiv:1807.06521, 2018.
[26] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[27] HIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7029-7038.
[28] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[29] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient iou loss for accurate bounding box regression[J]. arXiv:2101.08158, 2021.
[30] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the Neural Information Processing Systems, 2015.
[31] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision , 2016: 21-37.
[32] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018. |