Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (6): 30-44.DOI: 10.3778/j.issn.1002-8331.2205-0604
• Research Hotspots and Reviews • Previous Articles Next Articles
JIANG Xinlu, CHEN Tian’en, WANG Cong, LI Shuqin, ZHANG Hongming, ZHAO Chunjiang
Online:
2023-03-15
Published:
2023-03-15
蒋心璐,陈天恩,王聪,李书琴,张宏鸣,赵春江
JIANG Xinlu, CHEN Tian’en, WANG Cong, LI Shuqin, ZHANG Hongming, ZHAO Chunjiang. Survey of Deep Learning Algorithms for Agricultural Pest Detection[J]. Computer Engineering and Applications, 2023, 59(6): 30-44.
蒋心璐, 陈天恩, 王聪, 李书琴, 张宏鸣, 赵春江. 农业害虫检测的深度学习算法综述[J]. 计算机工程与应用, 2023, 59(6): 30-44.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2205-0604
[1] 盛承发.间接性害虫为害与作物产量损失的关系Ⅰ.食叶害虫[J].应用生态学报,1993,4(2):192-197. SHENG C F.Relationship of crop yield to feeding injury by indirect insect and mite pests.I.Leaf eating insect pests[J].Chinese Journal of Applied Ecology,1993,4(2):192-197. [2] 2022年粮食作物重大病虫害呈重发态势[J].中国农资,2022(1):15. Major diseases and insect pests of food crops will be re-emerging in 2022[J].China Agri-Production News,2022(1):15. [3] 李改完,王艳,冀晓燕.基层病虫测报工作存在问题及对策[J].现代农村科技,2011(7):4-5. LI G W,WANG Y,JI X Y.Problems and countermeasures of grass-roots disease and insect forecasting work[J].Modern Rural Science and Technology,2011(7):4-5. [4] JúNIOR T D C,RIEDER R.Automatic identification of insects from digital images:a survey[J].Computers and Electronics in Agriculture,2020,178:105784. [5] LI W,ZHENG T,YANG Z,et al.Classification and detection of insects from field images using deep learning for smart pest management:a systematic review[J].Ecological Informatics,2021,66:101460. [6] LIU J,WANG X.Plant diseases and pests detection based on deep learning:a review[J].Plant Methods,2021,17(1):22. [7] WANG R,LIU L,XIE C,et al.AgriPest:a large-scale domain-specific benchmark dataset for practical agricultural pest detection in the wild[J].Sensors,2021,21(5):1601. [8] LI W,WANG D,LI M,et al.Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse[J].Computers and Electronics in Agriculture,2021,183:106048. [9] GEROVICHEV A,SADEH A,WINTER V,et al.High throughput data acquisition and deep learning for insect ecoinformatics[J].Frontiers in Ecology and Evolution,2021,9:600931. [10] RUSTIA D J A,CHAO J J,CHIU L Y,et al.Automatic greenhouse insect pest detection and recognition based on a cascaded deep learning classification method[J].Journal of Applied Entomology,2021,145(3):206-222. [11] WANG Q J,ZHANG S Y,DONG S F,et al.Pest24:a large-scale very small object data set of agricultural pests for multi-target detection[J].Computers and Electronics in Agriculture,2020,175:105585. [12] HUANG M L,CHUANG T C.A database of eight common tomato pest images[J/OL].Mendeley Data,2020.https://doi.org/10.17632/s62zm6djd2.1. [13] CHUDZIK P,MITCHELL A,ALKASEEM M,et al.Mobile real-time grasshopper detection and data aggregation framework[J].Scientific Reports,2020,10(1):1-10. [14] WU X,ZHAN C,LAI Y,et al.IP102:a large-scale benchmark dataset for insect pest recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:8779-8788. [15] SUN Y,LIU X,YUAN M,et al.Automatic in-trap pest detection using deep learning for pheromone-based dendroctonus valens monitoring[J].Biosystems Engineering,2018,176:140-150. [16] DU J,LIU L,LI R,et al.Towards densely clustered tiny pest detection in the wild environment[J].Neurocomputing,2022,490:400-412. [17] HE Y,ZHOU Z Y,TIAN L H,et al.Brown rice planthopper(Nilaparvata lugens Stal) detection based on deep learning[J].Precision Agriculture,2020,21(6):1385-1402. [18] LI R,WANG R,XIE C,et al.A coarse-to-fine network for aphid recognition and detection in the field[J].Biosystems Engineering,2019,187:39-52. [19] LIU Z,GAO J,YANG G,et al.Localization and classification of paddy field pests using a saliency map and deep convolutional neural network[J].Scientific Reports,2016,6:20410. [20] WANG R,JIAO L,XIE C,et al.S-RPN:sampling-balanced region proposal network for small crop pest detection[J].Computers and Electronics in Agriculture,2021,187:106290. [21] LIU L,WANG R,XIE C,et al.PestNet:an end-to-end deep learning approach for large-scale multi-class pest detection and classification[J].IEEE Access,2019,7:45301-45312. [22] ZHONG Y,GAO J,LEI Q,et al.A vision-based counting and recognition system for flying insects in intelligent agriculture[J].Sensors,2018,18(5):1489. [23] DONG S,WANG R,LIU K,et al.CRA-Net:a channel recalibration feature pyramid network for detecting small pests[J].Computers and Electronics in Agriculture,2021,191:106518. [24] DE CESARO JúNIOR T,RIEDER R,DI DOMêNICO J R,et al.InsectCV:a system for insect detection in the lab from trap images[J].Ecological Informatics,2022,67:101516. [25] ROOSJEN P P,KELLENBERGER B,KOOISTRA L,et al.Deep learning for automated detection of Drosophila suzukii:potential for UAV‐based monitoring[J].Pest Management Science,2020,76(9):2994-3002. [26] DING W,TAYLOR G.Automatic moth detection from trap images for pest management[J].Computers and Electronics in Agriculture,2016,123:17-28. [27] ALVARO F,SOOK Y,SANG C K,et al.A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition[J].Sensors,2017,17(9):2022. [28] LI R,WANG R,ZHANG J,et al.An effective data augmentation strategy for CNN-based pest localization and recognition in the field[J].IEEE Access,2019,7:160274-160283. [29] LI W,CHEN P,WANG B,et al.Automatic localization and count of agricultural crop pests based on an improved deep learning pipeline[J].Scientific Reports,2019,9(1):1-11. [30] WANG F,WANG R,XIE C,et al.Fusing multi-scale context-aware information representation for automatic in-field pest detection and recognition[J].Computers and Electronics in Agriculture,2020,169:105222. [31] ZHA M,QIAN W,YI W,et al.A lightweight YOLOv4-based forestry pest detection method using coordinate attention and feature fusion[J].Entropy,2021,23(12):1587. [32] CHODEY M D,NOORULLAH SHARIFF C.Hybrid deep learning model for in-field pest detection on real-time field monitoring[J].Journal of Plant Diseases and Protection,2022:1-16. [33] 邓壮来,汪盼,宋雪桦,等.基于SSD的粮仓害虫检测研究[J].计算机工程与应用,2020,56(11):214-218. DENG Z L,WANG P,SONG X Y,et al.Research on granary pest detection based on SSD[J].Computer Engineering and Applications,2020,56(11):214-218. [34] 严礼伟.基于深度学习的植保无人机目标检测技术研究[D].西安:西安电子科技大学,2020. YAN L W.Research on target detection technology of plant protection UAV based on deep learning[D].Xi’an:Xidian University,2020. [35] RIOS J J C,VILLANUEVA E.Investigating generative neural-network models for building pest insect detectors in sticky trap images for the Peruvian horticulture[C]//NeurIPS 2021 Workshop LatinX in AI,2021. [36] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft coco:common objects in context[C]//European Conference on Computer Vision,2014:740-755. [37] 梁鸿,王庆玮,张千,等.小目标检测技术研究综述[J].计算机工程与应用,2021,57(1):17-28. LIANG H,WANG Q W,ZHANG Q,et al.Small object detection technology:a review[J].Computer Engineering and Applications,2021,57(1):17-28. [38] 李颀.桃树病害和害虫图像检测系统的研究与实现[D].泰安:山东农业大学,2021. LI X.Research and implementation of image detection system for peach diseases and pests[D].Tai’an:Agricultural University,2021. [39] SHEN Y,ZHOU H,LI J,et al.Detection of stored-grain insects using deep learning[J].Computers and Electronics in Agriculture,2018,145:319-325. [40] CHEN Y S,HSU C S,LO C L.An entire-and-partial feature transfer learning approach for detecting the frequency of pest occurrence[J].IEEE Access,2020,8:92490-92502. [41] LIU L,XIE C,WANG R,et al.Deep learning based automatic multiclass wild pest monitoring approach using hybrid global and local activated features[J].IEEE Transactions on Industrial Informatics,2020,17(11):7589-7598. [42] JIAO L,XIE C,CHEN P,et al.Adaptive feature fusion pyramid network for multi-classes agricultural pest detection[J].Computers and Electronics in Agriculture,2022,195:106827. [43] 刘浏.基于深度学习的农作物害虫检测方法研究与应用[D].合肥:中国科学技术大学,2020. LIU L.Research and applications on agricultural crop pest detection techniques based on deep learning[D].Hefei:University of Science and Technology of China,2020. [44] JIAO L,DONG S,ZHANG S,et al.AF-RCNN:an anchor-free convolutional neural network for multi-categories agricultural pest detection[J].Computers and Electronics in Agriculture,2020,174:105522. [45] 盛家文.基于机器视觉的农业虫害测报研究[D].杭州:浙江理工大学,2020. SHENG J W.Research on agricultural pest survey based on machine vision[D].Hangzhou:Zhejiang Sci-Tech University,2020. [46] SHI Z,DANG H,LIU Z,et al.Detection and identification of stored-grain insects using deep learning:a more effective neural network[J].IEEE Access,2020,8:163703-163714. [47] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125. [48] WANG X,LIU J,ZHU X.Early real-time detection algorithm of tomato diseases and pests in the natural environment[J].Plant Methods,2021,17(1):43. [49] WANG X,XIAO T,JIANG Y,et al.Repulsion loss:detecting pedestrians in a crowd[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7774-7783. [50] 郭永坤,朱彦陈,刘莉萍,等.空频域图像增强方法研究综述[J].计算机工程与应用,2022,58(11):23-32. GUO Y K,ZHU Y C,LIU L P,et al.Research review of space-frequency domain image enhancement methods[J].Computer Engineering and Applications,2022,58(11):23-32. [51] YANG S,RAMANAN D.Multi-scale recognition with DAG-CNNs[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1215-1223. [52] HU P,RAMANAN D.Finding tiny faces[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:951-959. [53] HU D,WANG L,JIANG W,et al.A novel image steganography method via deep convolutional generative adversarial networks[J].IEEE Access,2018,6:38303-38314. [54] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434,2015. [55] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein generative adversarial networks[C]//International Conference on Machine Learning,2017:214-223. [56] KINGMA D P,WELLING M.Auto-encoding variational bayes[J].arXiv:1312.6114,2013. [57] GHIASI G,CUI Y,SRINIVAS A,et al.Simple copy-paste is a strong data augmentation method for instance segmentation[J].arXiv:2012.07177,2020. [58] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018. [59] WU T,TANG S,ZHANG R,et al.Cgnet:a light-weight context guided network for semantic segmentation[J].IEEE Transactions on Image Processing,2020,30:1169-1179. [60] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [61] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[J].arXiv:1512.02325,2015. [62] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Boston,MA,2015:1-9. [63] LIU L,WANG R,XIE C,et al.Deep learning based automatic approach using hybrid global and local activated features towards large-scale multi-class pest monitoring[C]//2019 IEEE 17th International Conference on Industrial Informatics(INDIN),2019:1507-1510. [64] TAN M,PANG R,LE Q V.Efficientdet:scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10781-10790. [65] LIU S,HUANG D,WANG Y.Learning spatial fusion for single-shot object detection[J].arXiv:1911.09516,2019. [66] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409. 1556,2014. [67] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2980-2988. [68] BODLA N,SINGH B,CHELLAPPA R,et al.Soft-NMS-improving object detection with one line of code[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:5561-5569. [69] HE Y,ZHANG X,SAVVIDES M,et al.Softer-nms:rethinking bounding box regression for accurate object detection[J].arXiv:1809.08545,2018. [70] SHRIVASTAVA A,GUPTA A,GIRSHICK R.Training region-based object detectors with online hard example mining[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:761-769. [71] DAI J,LI Y,HE K,et al.R-FCN:object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems,2016. [72] XIE S,GIRSHICK R,DOLLáR P,et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1492-1500. [73] ALBANESE A,NARDELLO M,BRUNELLI D.Automated pest detection With DNN on the edge for precision agriculture[J].IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2021,11(3):458-467. [74] CHEN J W,LIN W J,CHENG H J,et al.A smartphone-based application for scale pest detection using multiple-object detection methods[J].Electronics,2021,10(4):372. [75] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [76] WANG F,WANG R,XIE C,et al.Convolutional neural network based automatic pest monitoring system using hand-held mobile image analysis towards non-site-specific wild environment[J].Computers and Electronics in Agriculture,2021,187:106268. [77] DEDRYVER C A,LE RALEC A,FABRE F.The conflicting relationships between aphids and men:a review of aphid damage and control strategies[J].Comptes Rendus Biologies,2010,333(6/7):539-553. [78] GUTIERREZ A,ANSUATEGI A,SUSPERREGI L,et al.A benchmarking of learning strategies for pest detection and identification on tomato plants for autonomous scouting robots using internal databases[J].Journal of Sensors,2019:1-15. [79] 祝钧桃,姚光乐,张葛祥,等.深度神经网络的小样本学习综述[J].计算机工程与应用,2021,57(7):22-33. ZHU J T,YAO G L,ZHANG G X,et al.Survey of few shot learning of deep neural network[J].Computer Engineering and Applications,2021,57(7):22-33. |
[1] | WANG Jing, JIN Yuchu, GUO Ping, HU Shaoyi. Survey of Camera Pose Estimation Methods Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 1-14. |
[2] | JIANG Yuying, CHEN Xinyu, LI Guangming, WANG Fei, GE Hongyi. Graph Neural Network and Its Research Progress in Field of Image Processing [J]. Computer Engineering and Applications, 2023, 59(7): 15-30. |
[3] | ZHOU Yurong, ZHANG Qiaoling, YU Guangzeng, XU Weiqiang. Review of Acoustic Signal-Based Industrial Equipment Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(7): 51-63. |
[4] | WEI Jian, ZHAO Xu, LI Lianpeng. Siamese Network Weak Target Tracking Algorithm Fused with Location Information Attention [J]. Computer Engineering and Applications, 2023, 59(7): 198-206. |
[5] | ZHAO Hongwei, ZHENG Jiajun, ZHAO Xinxin, WANG Shengchun, LI Yidong. Rail Surface Defect Method Based on Bimodal-Modal Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 285-293. |
[6] | GAO Teng, ZHANG Xianwu, LI Bai. Review on Application of Deep Learning in Helmet Wearing Detection [J]. Computer Engineering and Applications, 2023, 59(6): 13-29. |
[7] | JIANG Qianyin, YU Zhi, LI Xiying. Application of Label-Bias Network in Datasets with Noisy Labels [J]. Computer Engineering and Applications, 2023, 59(6): 92-100. |
[8] | LI Yu, HAN Xiaohong, ZHANG Ling, ZHANG Haixuan, LI Gang. Seismic P-Wave First-Arrival Picking Model Based on Spatiotemporal Attention Mechanism [J]. Computer Engineering and Applications, 2023, 59(6): 113-124. |
[9] | LYU Xiaoling, YANG Shengyue, ZHANG Minglu, LIANG Ming, WANG Junchao. Improved Fisheye Image Target Detection Algorithm Based on YOLOv5 Network [J]. Computer Engineering and Applications, 2023, 59(6): 241-250. |
[10] | PENG Pei, ZHANG Meiling, ZHENG Dong. Side Channel Attack Fused with CNN_LSTM [J]. Computer Engineering and Applications, 2023, 59(6): 268-276. |
[11] | SUN Shukui, FAN Jing, LI Zhanwen, QU Jinshuai, LU Peidong. Survey of Artificial Intelligence in COVID-19 Pandemic [J]. Computer Engineering and Applications, 2023, 59(5): 28-39. |
[12] | XIAO Yang, ZHOU Jun. Overview of Image Edge Detection [J]. Computer Engineering and Applications, 2023, 59(5): 40-54. |
[13] | YE Wei, TAO Yongjun, CHEN Xicheng, WU Yazhou. Deep Ensemble Evolutionary Multi-Classification Method for Predicting Prognosis of Stroke [J]. Computer Engineering and Applications, 2023, 59(5): 95-105. |
[14] | BAI Shaojin, BAI Jing, SI Qinglong, JI Hui, YUAN Tao. Deep Ensemble Learning for Diversified 3D Model Classification [J]. Computer Engineering and Applications, 2023, 59(5): 222-231. |
[15] | ZHANG Jiayu, GUO Mei, ZHANG Yongliang, LI Mei, GENG Nan, GENG Yaojun. Research on Construction of Fine-Grained Knowledge Graph of Apple Diseases and Pests [J]. Computer Engineering and Applications, 2023, 59(5): 270-280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||