Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (6): 13-29.DOI: 10.3778/j.issn.1002-8331.2207-0434
• Research Hotspots and Reviews • Previous Articles Next Articles
GAO Teng, ZHANG Xianwu, LI Bai
Online:
2023-03-15
Published:
2023-03-15
高腾,张先武,李柏
GAO Teng, ZHANG Xianwu, LI Bai. Review on Application of Deep Learning in Helmet Wearing Detection[J]. Computer Engineering and Applications, 2023, 59(6): 13-29.
高腾, 张先武, 李柏. 深度学习在安全帽佩戴检测中的应用研究综述[J]. 计算机工程与应用, 2023, 59(6): 13-29.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2207-0434
[1] ZHOU X,WANG D,KRHENBüHL P.Objects as points[J].arXiv.1904.07850,2019. [2] 孙方伟,李承阳,谢永强,等.深度学习应用于遮挡目标检测算法综述[J].计算机科学与探索,2022,16(6):1243-1259. SUN F W,LI C Y,XIE Y Q,et al.Review of deep learning applied to occluded object detection[J].Journal of Frontiers of Computer Science and Technology,2022,16(6):1243-1259. [3] 邬开俊,黄涛,王迪聪,等.视频异常检测技术研究进展[J].计算机科学与探索,2022,16(3):529-540. WU K J,HUANG T,WANG D C,et al.Research progress of video anomaly detection technology[J].Journal of Frontiers of Computer Science and Technology,2022,16(3):529-540. [4] 董文轩,梁宏涛,刘国柱,等.深度卷积应用于目标检测算法综述[J].计算机科学与探索,2022,16(5):1025-1042. DONG W X,LIANG H T,LIU G Z,et al.Review of deep convolution applied to target detection algorithms[J].Journal of Frontiers of Computer Science and Technology,2022,16(5):1025-1042. [5] 张立艺,武文红,牛恒茂,等.深度学习中的安全帽检测算法应用研究综述[J].计算机工程与应用,2022,58(16):1-17. ZHANG L Y,WU W H,NIU H M,et al.Summary of application research on helmet detection algorithm based on deep learning[J].Computer Engineering and Applications,2022,58(16):1-17. [6] 李政谦,刘晖.基于深度学习的安全帽佩戴检测算法综述[J].计算机应用与软件,2022,39(6):194-202. LI Z Q,LIU H.Helmet wearing detection algorithm based on deep learning[J].Computer Applications and Software,2022,39(6):194-202. [7] EVERINGHAM M,GOOL L V,WILLIAMS C,et al.The pascal visual object classes(VOC) challenge[J].International Journal of Computer Vision,2010,88(2):303-338. [8] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:common objects in context[C]//13th European Conference on Computer Vision(ECCV),2014:740-755. [9] DENG J,DONG W,SOCHER R,et al.ImageNet:a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2009:248-255. [10] WEN P,TONG M,DENG Z,et al.Improved helmet wearing detection method based on YOLOv3[C]//International Conference on Artificial Intelligence and Security(ICAIC),2020:670-681. [11] FU D,GAO L,HU T,et al.Research on safety helmet detection algorithm of power workers based on improved YOLOv5[J].Journal of Physics:Conference Series,2022:012006. [12] 方明,孙腾腾,邵桢.基于改进YOLOv2的快速安全帽佩戴情况检测[J].光学精密工程,2019,27(5):1196-1205. FANG M,SUN T T,SHAO Z.Fast helmet-wearing condition detection based on improved YOLOv2[J].Optics and Precision Engineering,2019,27(5):1196-1205. [13] ZHANG W,YANG C F,JIANG F,et al.Safety helmet wearing detection based on image processing and deep learning[C]//2020 International Conference on Communications,Information System and Computer Engineering(CISCE),2020:343-347. [14] 熊江宜.基于深度学习的轻量级安全帽佩戴检测算法研究[D].荆州:长江大学,2021. XIONG J Y.A research on lightweight safety helmet detection algorithm based on deep learning[D].Jingzhou:Chang- jiang University,2021. [15] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//27th IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2014:580-587. [16] GIRSHICK R.Fast R-CNN[C]//IEEE International Conference on Computer Vision(ICCV),2015:1440-1448. [17] REN S Q,HE K M,SUN J,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [18] 张明媛,曹志颖,赵雪峰,等.基于深度学习的建筑工人安全帽佩戴识别研究[J].安全与环境学报,2019,19(2):535-541. ZHANG M Y,CAO Z Y,ZHAO X F,et al.On the identification of the safety helmet wearing manners for the construction company workers based on the deep learning theory[J].Journal of Safety and Environment,2019,19(2):535-541. [19] FANG Q,LUO X C,DING L Y,et al.Detecting non-hardhat-use by a deep learning method from far-field surveillance videos[J].Automation in Construction,2018,85:1-9. [20] ESPINOSA-OVIEDO J E,VELASTíN S A,BRANCH-BEDOYA J W.EspiNet V2:a region based deep learning model for detecting motorcycles in urban scenarios[J].Dyna,2019,86(211):317-326. [21] 孙国栋,李超,张航.融合自注意力机制的安全帽佩戴检测方法[J].计算机工程与应用,2022,58(20):300-304. SUN G D,LI C,ZHANG H.Safety helmet wearing detection method fused with self-attention mechanism[J].Computer Engineering and Applications,2022,58(20):300-304. [22] 徐守坤,王雅如,顾玉宛,等.基于改进Faster RCNN的安全帽佩戴检测研究[J].计算机应用研究,2020,37(3):901-905. XU S K,WANG Y R,GU Y W,et al.Safety helmet wearing detection study based on improved Faster RCNN[J].Application Research of Computers,2020,37(3):901-905. [23] 王慧.基于改进Faster R-CNN的安全帽检测及身份识别[D].西安:西安科技大学,2020. WANG H.Safety helmet detection and identification based on improved Faster R-CNN[D].Xi’an:Xi’an University of Science and Technology,2020. [24] CHEN S B,TANG W H,YANG Y O,et al.Detection of safety helmet wearing based on improved faster R-CNN[C]//2020 International Joint Conference on Neural Networks(IJCNN),2020:7-15. [25] 张博,宋元斌,熊若鑫,等.融合人体关节点的安全帽佩戴检测[J].中国安全科学学报,2020,30(2):177-182. ZHANG B,SONG Y B,XIONG R X,et al.Helmet-wearing detection considering human joint[J].China Safety Science Journal,2020,30(2):177-182. [26] 李鹏.基于目标检测与深度估计的施工现场安全预警关键技术研究与实现[D].成都:电子科技大学,2021. LI P.Research and implementation of key technology of on-site safety early warning based on object detection and depth estimation[D].Chengdu:University of Electronic Science and Technology,2021. [27] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:779-788. [28] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision Pattern Recognition(CVPR),2017:6517-6525. [29] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018. [30] 屈文谦,邱志斌,廖才波,等.基于YOLOv3的电网作业人员安全帽佩戴检测[J].中国安全生产科学技术,2022,18(2):214-219. QU W Q,QIU Z B,LIAO C B,et al.Detection on safety helmet wearing of power grid operators based on YOLOv3[J].Journal of Safety Science and Technology,2022,18(2):214-219. [31] 唐勇,巫思敏.YOLOv3在安全帽佩戴检测中的应用[J].现代信息科技,2021,5(23):88-95. TANG Y,WU S M.Application of YOLOv3 in safety helmet wearing detection[J].Modern Information Technology,2021,5(23):88-95. [32] 丁文龙,费树珉.基于改进YOLOv3的安全帽检测方法研究[J].电子测试,2022,36(11):84-86. DING W L,FEI S M.Research on safety helmet detection method based on improved YOLOv3[J].Electronic Test,2022,36(11):84-86. [33] CHENG R,HE X,ZHENG Z,et al.Multi-scale safety helmet detection based on SAS-YOLOv3-tiny[J].Applied Sciences,2021,11(8):3652. [34] HUANG L,FU Q,HE M,et al.Detection algorithm of safety helmet wearing based on deep learning[J].Concurrency and Computation:Practice and Experience,2021,33(13):e6234. [35] GENG R,MA Y,HUANG W.An improved helmet detection method for YOLOv3 on an unbalanced dataset[C]//2021 3rd International Conference on Advances in Computer Technology,Information Science and Communication(CTISC),2021:328-332. [36] ZHAO B N,LAN H J,NIU Z W,et al.Detection and location of safety protective wear in power substation operation using wear-enhanced YOLOv3 algorithm[J].IEEE Access,2021(9):125540-125549. [37] 张学锋,王子琦,汤亚玲.基于YOLO-CDF神经网络的安全帽检测[J].重庆工商大学学报(自然科学版),2022,39(4):32-41. ZHANG X F,WANG Z Q,TANG Y L.Helmet detection based on YOLO-CDF neural network[J].Journal of Chong- qing Technology and Business University(Natural Science Edition),2022,39(4):32-41. [38] DENG L,LI H,LIU H,et al.A lightweight YOLOv3 algorithm used for safety helmet detection[J].Scientific Reports,2022,12(1). [39] 赵红成,田秀霞,杨泽森,等.改进YOLOv3的复杂施工环境下安全帽佩戴检测算法[J].中国安全科学学报,2022,32(5):194-200. ZHAO H C,TIAN X X,YANG Z S,et al.Safety helmet wearing detection algorithm in complex construction environment based on improved YOLOv3[J].China Safety Science Journal,2022,32(5):194-200. [40] 许凯,邓超.基于改进YOLOv3的安全帽佩戴识别算法[J].激光与光电子学进展,2021,58(6):300-307. XU K,DENG C.Research on helmet wear identification based on improved YOLOv3[J].Laser & Optoelectronics Progress,2021,58(6):300-307. [41] SONG H.Multi-scale safety helmet detection based on RSSE-YOLOv3[J].Sensors,2022,22(16):6061. [42] 邱浩然.基于改进YOLOv3的安全帽检测算法研究与实现[D].成都:西南交通大学,2020. QIU H R.Research and implementation of hard hat detection algorithm based on improved YOLOv3[D].Chengdu:Southwest Jiaotong University,2020. [43] 刘川.基于工程环境背景下安全帽佩戴检测算法研究[J].河南科技,2022,41(4):7-12. LIU C.Research on the algorithm of safety helmet wearing detection based on the background of engineering environment[J].Henan Science and Technology,2022,41(4):7-12. [44] 何超.基于改进YOLOv3的安全帽检测系统研究[D].武汉:华中科技大学,2019. HE C.Research on safety helmet detection system based on improved YOLOv3[D].Wuhan:Huazhong University of Science and Technology,2019. [45] WU F,JIN G,GAO M,et al.Helmet detection based on improved YOLO V3 deep model[C]//2019 IEEE 16th International Conference on Networking,Sensing and Control(ICNSC),2019:363-368. [46] WANG H K,HU Z Y,GUO Y J,et al.A real-time safety helmet wearing detection approach based on CSYOLOv3[J].Applied Sciences,2020,10(19):6732. [47] 刘增辉,和孙文,张社荣,等.基于改进YOLOv3的水电施工区安全佩戴检测方法[J].水力发电,2022,48(7):68-74. LIU Z H,HE S W,ZHANG S R,et al.Safety wearing detection method in hydropower construction area based on improved YOLOv3[J].Water Power,2022,48(7):68-74. [48] BOCHKOVSKIY A,WANG C Y,LIAO H.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [49] YUN Y L,JIANG W.Detection of wearing safety helmet for workers based on YOLOv4[C]//2021 International Conference on Computer Engineering and Artificial Intelligence(ICCEAI),2021:83-87. [50] LIU Y,JIANG W,ARTIFICIAL I.Detection of wearing safety helmet for workers based on YOLOv4[J].International Conference on Computer Engineering,2021:83-87. [51] 谢国波,唐晶晶,林志毅,等.复杂场景下的改进YOLOv4安全帽检测算法[J/OL].激光与光电子学进展:1-13[2022-10-20].http://kns.cnki.net/kcms/detail/31.1690.tn.20220714. 1254.291.html. XIE G B,TANG J J,LIN Z H,et al.Improved YOLOv4 helmet detection algorithm for complex scenarios[J/OL].Laser & Optoelectronics Progress:1-13[2022-10-20].http://kns.cnki.net/kcms/detail/31.1690.tn.20220714.1254.291.html. [52] ZENG L,DUAN X,PAN Y,et al.Research on the algorithm of helmet-wearing detection based on the optimized yolov4[J].The Visual Computer,2022:1-11. [53] 杨贞,朱强强,彭小宝,等.基于深度级联模型工业安全帽检测算法[J].计算机与现代化,2022(1):91-97. YANG Z,ZHU Q Q,PENG X B,et al.Industrial safety helmet detection algorithm based on depth cascade model[J].Computer and Modernization,2022(1):91-97. [54] 杨雪,陈刚.基于深度学习的移动端安全帽检测系统设计与实现[J].江苏通信,2022,38(2):103-106. YANG X,CHEN G.Design and implementation of mobile helmet detection system based on deep learning[J].Jiangsu Communication,2022,38(2):103-106. [55] 王雨晨,徐明昆.基于改进YOLOv4的安全帽佩戴检测算法[J].现代信息科技,2021,5(22):156-160. WANG Y C,XU M K.Safety helmet wearing detection algorithm based on improved YOLOv4[J].Modern Information Technology,2021,5(22):156-160. [56] 李帅,李丽宏,王素刚,等.改进YOLOv4算法的安全帽检测[J].现代电子技术,2022,45(3):103-110. LI S,LI L H,WANG S G,et al.Helmet detection based on improved YOLOv4 algorithm[J].Modern Electronics Technique,2022,45(3):103-110. [57] 郭奕裕,周箩鱼.安全帽佩戴检测网络模型的轻量化设计[J/OL].计算机工程:1-12[2022-10-20].DOI:10.19678/j.issn.1000-3428.0064219. GUO Y Y,ZHOU L Y.Lightweight design of safety helmet wearing detection network model[J/OL].Computer Engineering:1-12[2022-10-20].DOI:10.19678/j.issn.1000-3428.0064219. [58] 葛青青,张智杰,袁珑,等.融合环境特征与改进YOLOv4的安全帽佩戴检测[J].中国图象图形学报,2021,26(12):2904-2917. GE Q Q,ZHANG Z J,YUAN L,et al.Safety helmet wearing detection method of fusing environmental features and improved YOLOv4[J].Journal of Image and Graphics,2021,26(12):2904-2917. [59] 王晨,齐华,史建利.基于YOLOv4的安全帽佩戴检测及工种身份识别[J].计算机系统应用,2022,31(7):272-277. WANG C,QI H,SHI J L.Safety helmet wearing detection and type of work identification based on YOLOv4[J].Computer Systems and Applications,2022,31(7):272-277. [60] 张萌,韩豫,刘泽锋.深度学习下建筑工人高空安全防护装备检测方法[J].中国安全科学学报,2022,32(5):140-146. ZHANG M,HAN Y,LIU Z F.Detection method of high-altitude safety protective equipment for construction workers based on deep learning[J].China Safety Science Journal,2022,32(5):140-146. [61] GAO S,RUAN Y,WANG Y,et al.Safety helmet detection based on YOLOV4-M[C]//2022 IEEE International Conference on Artificial Intelligence and Computer Applications(ICAICA),2022:179-181. [62] ZHOU F,ZHAO H,NIE Z,et al.Safety helmet detection based on YOLOv5[C]//2021 IEEE International Conference on Power Electronics,Computer Applications(ICPECA),2021. [63] MA Y,FANG Y.Safety helmet wearing recognition based on YOLOv5[M]//Mobile wireless middleware,operating systems and applications.Cham:Springer,2022:137-150. [64] 朱晓春,陈子涛.基于改进型YOLO v5算法的安全帽佩戴检测[J].南京工程学院学报(自然科学版),2021,19(4):7-11. ZHU X C,CHEN Z T.Safety Helmet wearing detection based on improved YOLO v5[J].Journal of Nanjing Institute of Technology(Natural Science Edition),2021,19(4):7-11. [65] 张锦,屈佩琪,孙程,等.基于改进YOLOv5的安全帽佩戴检测方法[J/OL].计算机应用:1-11[2022-10-20].http://kns.cnki.net/kcms/detail/51.1307.TP.20210908.1727.002.html. ZHANG J,QU P Q,SUN C,et al.Safety helmet wearing detection method based on improved YOLOv5[J].Journal of Computer Applications:1-11[2022-10-20].http://kns.cnki.net/kcms/detail/51.1307.TP.20210908.1727.002.html. [66] 岳衡,黄晓明,林明辉,等.基于改进YOLOv5的安全帽佩戴检测[J].计算机与现代化,2022(6):104-108. YUE H,HUANG X M,LIN M H,et al.Helmet-wearing detection based on improved YOLOv5[J].Computer and Modernization,2022(6):104-108. [67] 杨永波,李栋.改进YOLOv5的轻量级安全帽佩戴检测算法[J].计算机工程与应用,2022,58(9):201-207. YANG Y B,LI D.Lightweight helmet wearing detection algorithm of improved YOLOv5[J].Computer Engineering and Applications,2022,58(9):201-207. [68] 王玲敏,段军,辛立伟.引入注意力机制的YOLOv5安全帽佩戴检测方法[J].计算机工程与应用,2022,58(9):303-312. WANG L M,DUAN J,XIN L W.YOLOv5 helmet wear detection method with introduction of attention mechanism[J].Computer Engineering and Applications,2022,58(9):303-312. [69] 蒋润熙,阿里甫·库尔班,耿丽婷.面向轻量化网络的安全帽检测算法[J].计算机工程与应用,2021,57(20):263-270. JIANG R X,ALIFU·KUERBAN,GENG L T.Safety helmet detection algorithm for lightweight network[J].Computer Engineering and Applications,2021,57(20):263-270. [70] WANG L,CAO Y,WANG S,et al.Investigation into recognition algorithm of helmet violation based on YOLOv5-CBAM-DCN[J].IEEE Access,2022,10:60622-60632. [71] XU Z P,ZHANG Y,CHENG J,et al.Safety helmet wearing detection based on YOLOv5 of attention mechanism[J].Journal of Physics:Conference Series,2022. [72] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision,2016:21-37. [73] 岳诗琴,张乾,邵定琴,等.基于ResNet50-SSD的安全帽佩戴状态检测研究[J].长江信息通信,2021,34(3):86-89. YUE S Q,ZHANG Q,SHAO D Q,et al.Safety helmet wearing status detection study based on ResNet50-SSD[J].Changjiang Information & Communications,2021,34(3):86-89. [74] 徐先峰,赵万福,邹浩泉,等.基于MobileNet-SSD的安全帽佩戴检测算法[J].计算机工程,2021,47(10):298-305. XU X F,ZHAO W F,ZOU H Q.Detection algorithm of safety helmet wear based on MobileNet-SSD[J].Computer Engineering,2021,47(10):298-305. [75] DUAN K,BAI S,XIE L,et al.CenterNet:keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6569-6578. [76] 周敏新,张方舟,龚声蓉.基于新型特征融合的安全帽佩戴检测方法[J].计算机工程与设计,2021,42(11):3181-3187. ZHOU M X,ZHANG F Z,GONG S R.Detection of non-hardhat-use based on new feature fusion[J].Computer Engineering and Design,2021,42(11):3181-3187. [77] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017(99):2999-3007. [78] 王雨生,顾玉宛,封晓晨,等.基于姿态估计的安全帽佩戴检测方法研究[J].计算机应用研究,2021,38(3):937-940. WANG Y S,GU Y Y,FENG X C,et al.Research on detection method of helmet wearing based on attitude estimation[J].Application Research of Computers,2021,38(3):937-940. [79] 刘光品,刘云鹏,王仁芳.基于改进RetinaNet模型的室内安全帽佩戴检测研究[J].浙江万里学院学报,2020,33(6):97-103. LIU G P,LIU Y P,WANG R F.Research on indoor hard hat wear detection based on revised RetinaNet model[J].Journal of Zhejiang Wanli University,2020,33(6):97-103. [80] GE Z,LIU S,WANG F,et al.YOLOX:exceeding YOLO series in 2021[J].arXiv.2107.08430,2021. [81] 李骏峰,杨小军,张凯望.基于YOLOX-L算法的安全帽佩戴检测方法[J].计算机技术与发展,2022,32(9):100-106. LI J F,YANG X J,ZHANG K W.Safety helmet wearing detection method based on YOLOX-L algorithm[J].Computer Technology and Development,2022,32(9):100-106. [82] 丁田,陈向阳,周强,等.基于改进YOLOX的安全帽佩戴实时检测[J/OL].电子测量技术:1-6[2022-10-20].http://kns.cnki.net/kcms/detail/11.2175.TN.20220812.1637.022.html. DING T,CHEN X Y,ZHOU Q,et al.Real-time detection of helmet wearing based on improved YOLOX[J].Electronic Measurement Technology:1-6[2022-10-20].http://kns.cnki.net/kcms/detail/11.2175.TN.20220812.1637.022.html. [83] 程换新,蒋泽芹,程力,等.基于改进YOLOX-S的安全帽反光衣检测算法[J].电子测量技术,2022,45(6):130-135. GHENG H X,JIANG Z Q,CHENG L,et al.Helmet and reflective clothing detection algorithm based on improved YOLOX-S[J].Electronic Measurement Technology,2022,45(6):130-135. [84] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016. [85] HU J,SUN L,SHEN G,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017(99). [86] WOO S,PARK J,LEE J Y,et al.Cbam:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:3-19. [87] HAN G,ZHU M C,ZHAO X C,et al.Method based on the cross-layer attention mechanism and multiscale perception for safety helmet-wearing detection[J].Computers and Electrical Engineering,2021,95:107458. [88] WANG H,KEMBHAVI A,FARHADI A,et al.ELASTIC:improving CNNs with dynamic scaling policies[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2019. [89] TAN S,LU G,JIANG Z,et al.Improving object detection with one line of code[C]//2021 IEEE International Conference on Intelligence and Safety for Robotics(ISR),2021. [90] ZHENG Z,WANG P,LIU W,et al.Distance-IoU loss:faster and better learning for bounding box regression[C]//The Thirty-Fourth AAAI Conference on Artificial Intelligence(AAAI-20),2019. [91] TAN S L,LU G L,JIANG Z Q,et al.Improved YOLOv5 network model and application in safety helmet detection[C]//2021 IEEE International Conference on Intelligence and Safety for Robotics(ISR),2021. [92] 罗舜,于娟.改进多尺度网络的行人目标检测算法[J].福州大学学报(自然科学版),2022(5):587-594. LUO S,YU J.Pedestrian target detection algorithm based on improved multi-scale network[J].Journal of Fuzhou University(Natural Science Edition),2022(5):587-594. [93] 王红梅,王晓鸽,王晓燕.基于深度学习的复杂背景下目标检测[J].控制与决策,2022,37(12):3115-3121. WANG H M,WANG X G,WANG X Y.Target detection under complex background based on deep learning[J].Control and Decision,2022,37(12):3115-3121. [94] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Communications of the ACM,2016,63(11):139-144. [95] 郭师虹,井锦瑞,张潇丹,等.基于改进的YOLOv4安全帽佩戴检测研究[J].中国科学生产技术,2021,17(12):135-141. GUO S H,JING J R,ZHANG X D,et al.Research on detection of safety helmet wearing based on improved YOLOv4[J].Journal of Safety Science and Technology,2021,17(12):135-141. |
[1] | WEI Jian, ZHAO Xu, LI Lianpeng. Siamese Network Weak Target Tracking Algorithm Fused with Location Information Attention [J]. Computer Engineering and Applications, 2023, 59(7): 198-206. |
[2] | SHI Yue, YU Wanjun, CHEN Ying. RGB-D Saliency Detection Based on Multi-Level Feature Fusion [J]. Computer Engineering and Applications, 2023, 59(7): 207-213. |
[3] | ZHAO Hongwei, ZHENG Jiajun, ZHAO Xinxin, WANG Shengchun, LI Yidong. Rail Surface Defect Method Based on Bimodal-Modal Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 285-293. |
[4] | WANG Jing, JIN Yuchu, GUO Ping, HU Shaoyi. Survey of Camera Pose Estimation Methods Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 1-14. |
[5] | JIANG Yuying, CHEN Xinyu, LI Guangming, WANG Fei, GE Hongyi. Graph Neural Network and Its Research Progress in Field of Image Processing [J]. Computer Engineering and Applications, 2023, 59(7): 15-30. |
[6] | ZHOU Yurong, ZHANG Qiaoling, YU Guangzeng, XU Weiqiang. Review of Acoustic Signal-Based Industrial Equipment Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(7): 51-63. |
[7] | XU Jian, XIE Zhengguang, LI Hongjun. Feature-Balanced UAV Aerial Image Target Detection Algorithm [J]. Computer Engineering and Applications, 2023, 59(6): 196-203. |
[8] | LYU Xiaoling, YANG Shengyue, ZHANG Minglu, LIANG Ming, WANG Junchao. Improved Fisheye Image Target Detection Algorithm Based on YOLOv5 Network [J]. Computer Engineering and Applications, 2023, 59(6): 241-250. |
[9] | PENG Pei, ZHANG Meiling, ZHENG Dong. Side Channel Attack Fused with CNN_LSTM [J]. Computer Engineering and Applications, 2023, 59(6): 268-276. |
[10] | ZHANG Shihui, LUO Hui, PEI Yingling, YU Junying, XU Jie. Surface Crack Detection in Ballastless Slab Track of High-Speed Railway Based on Improved RetinaNet [J]. Computer Engineering and Applications, 2023, 59(6): 310-317. |
[11] | JIANG Xinlu, CHEN Tian’en, WANG Cong, LI Shuqin, ZHANG Hongming, ZHAO Chunjiang. Survey of Deep Learning Algorithms for Agricultural Pest Detection [J]. Computer Engineering and Applications, 2023, 59(6): 30-44. |
[12] | HU Songsong, WU Lianghong, ZHANG Hongqiang, CHEN Liang, ZHOU Bowen, ZHANG Lyu. E-CenterNet Algorithm with Improved Multi-Scale Convolution Structure and Gaussian Kernel [J]. Computer Engineering and Applications, 2023, 59(6): 70-80. |
[13] | JIANG Qianyin, YU Zhi, LI Xiying. Application of Label-Bias Network in Datasets with Noisy Labels [J]. Computer Engineering and Applications, 2023, 59(6): 92-100. |
[14] | LI Yu, HAN Xiaohong, ZHANG Ling, ZHANG Haixuan, LI Gang. Seismic P-Wave First-Arrival Picking Model Based on Spatiotemporal Attention Mechanism [J]. Computer Engineering and Applications, 2023, 59(6): 113-124. |
[15] | BAI Shaojin, BAI Jing, SI Qinglong, JI Hui, YUAN Tao. Deep Ensemble Learning for Diversified 3D Model Classification [J]. Computer Engineering and Applications, 2023, 59(5): 222-231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||