Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (23): 334-340.DOI: 10.3778/j.issn.1002-8331.2208-0089

• Engineering and Applications • Previous Articles     Next Articles

SSVEP Research for Generalized Task-Related Component Analysis #br#

HAN Dan, DONG Yanqing, GAO Chengxin, CAO Rui   

  1. School  of Software, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
  • Online:2023-12-01 Published:2023-12-01

广义任务相关成分分析的SSVEP研究

韩丹,董艳清,高程昕,曹锐   

  1. 太原理工大学 软件学院,山西 晋中 030600

Abstract: Steady-state visual evoked potential brain-computer interface(SSVEP-BCI) has been widely used because of its stability and efficiency. Task-related component analysis(TRCA) is a main method for frequency identification in SSVEP-BCI systems. To solve the problems of?low recognition accuracy in short time window, a generalized task-related component analysis(GTRCA) method is proposed to?maximize the correlation between a single training data, a single test data, and the predefined sines and cosines to improve the character recognition performance of SSVEP-BCI further. The proposed GTRCA method and its filter bank method are evaluated on the benchmark data set of 35 subjects. The results show that the proposed method has obvious advantages over other benchmark algorithms such as TRCA. The highest average classification accuracy is (90.7±4.71)%, and the highest information transfer rate is (188.46±18.69)?bit/min. The research shows that the GTRCA-based method has greater value to achieve the high-performance goal of SSVEP-BCI system.

Key words: brain-computer interface, steady-state visual evoked potential, generalized task-related component analysis

摘要: 稳态视觉诱发电位脑机接口(SSVEP-BCI)因其稳定、高效得到了广泛的应用。任务相关成分分析(TRCA)是一种在SSVEP-BCI系统中识别频率的主要方法。为了解决短时间窗口识别准确率较低等问题,提出了一种广义任务相关成分分析(GTRCA)方法,可最大化单个训练数据、单个测试数据和预定义的正余弦信号这三组数据之间的相关性以进一步提高SSVEP-BCI的字符识别性能。GTRCA方法及其滤波器方法在35名受试者的数据集上进行评估,结果表明该方法的分类性能与TRCA等基准算法相比具有明显优势,平均分类准确率最高达到(90.7±4.71)%,信息传输率最高达到(188.46±18.69)?bit/min。研究表明,基于GTRCA的方法对实现SSVEP-BCI系统的高性能目标具有较大价值。

关键词: 脑机接口, 稳态视觉诱发电位, 广义任务相关成分分析