HAN Dan, DONG Yanqing, GAO Chengxin, CAO Rui. SSVEP Research for Generalized Task-Related Component Analysis #br#[J]. Computer Engineering and Applications, 2023, 59(23): 334-340.
[1] NORCIA A M,APPELBAUM L G,ALES J M,et al.The steady-state visual evoked potential in vision research:a review[J].Journal of Vision,2015,15(6):4.
[2] GAO X R,WANG Y J,CHEN X G,et al.Interface,interaction,and intelligence in generalized brain-computer interfaces[J].Trends in Cognitive Science,2021,25(8):671-684.
[3] MAHMOOD M,MZURIKWAO D,KIM Y S,et al.Fully portable and wireless universal brain-machine interfaces enabled by flexible scalp electronics and deep learning algorithm[J].Nat Mach Intell,2019,1(9):412-422.
[4] BITTENCOURT-VILLALPANDO M,MAURITS N M.Stimuli and feature extraction algorithms for brain-computer Interfaces:a systematic comparison[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2018,26(9):1669-1679.
[5] NICOLAS-ALONSO L F,GOMEZ-GIL J.Brain computer interfaces,a review[J].Sensors-Basel,2012,12(2):1211-1279.
[6] 乔敏,张德雨,刘思宇,等.新颖的稳态视觉诱发电位脑机接口系统[J].计算机工程与应用,2021,57(8):153-159.
QIAO M,ZHANG D Y,LIU S Y,et al.Novel brain-computer interface system based on steady-state visual evoked potential[J].Computer Engineering and Applications,2021,57(8):153-159.
[7] LI M,HE D,LI C,et al.Brain-computer interface speller based on steady-state visual evoked potential:a review focusing on the stimulus paradigm and performance[J].Brain Sciences,2021,11(4):450.
[8] CHEN X G,WANG Y J,NAKANISHI M,et al.High-speed spelling with a noninvasive brain-computer interface[J].P Natl Acad Sci USA,2015,112(44):6058-6067.
[9] CHEN X,WANG Y,GAO S,et al.Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface[J].J Neural Eng,2015,12(4):046008.
[10] NAKANISHI M,WANG Y J,CHEN X G,et al.Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis[J].IEEE Transactions on Biomedical Engineering,2018,65(1):104-112.
[11] TONG C,WANG H,YANG C,et al.Group ensemble learning enhances the accuracy and convenience of SSVEP-based BCIs via exploiting inter-subject information[J].Biomedical Signal Processing and Control,2021,68:102797.
[12] LEE H K,CHOI Y S,et al.Enhancing SSVEP-based brain-computer interface with two-step task-related component analysis[J].Sensors,2021,21(4):1315.
[13] KIRAN KUMAR G R,RAMASUBBA REDDY M.Designing a sum of squared correlations framework for enhancing SSVEP-based BCIs[J].IEEE Trans Neural Syst Rehabil Eng,2019,27(10):2044-2050.
[14] WANG Y,CHEN X,GAO X,et al.A benchmark dataset for SSVEP-based brain-computer interfaces[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2017,25(10):1746-1752.
[15] SRINIVASAN R,BIBI F A,NUNEZ P L.Steady-state visual evoked potentials:distributed local sources and wave-like dynamics are sensitive to flicker frequency[J].Brain Topogr,2006,18(3):167-187.
[16] SUN Q,CHEN M,ZHANG L,et al.Similarity-constrained task-related component analysis for enhancing SSVEP detection[J].Journal of Neural Engineering,2021,18(4):046080.
[17] ZHANG Y,XIE S Q,WANG H,et al.Data analytics in steady-state visual evoked potential-based brain-computer interface:a review[J].IEEE Sensors Journal,2021,21(2):1124-1138.
[18] DING W,SHAN J,FANG B,et al.Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2021,29:2615-2624.
[19] WOLPAW J R,MCFARLAND D J,VAUGHAN T M,et al.Brain-computer interfaces for communication and control[J].Neurological Rehabilitation,2002:451-459.