Lightweight Facial Expression Recognition with Spatial Group-Wise Enhance
LIU Jin, LUO Xiaoshu, XU Zhaoxing
1.School of Electronic Engineering, Guangxi Normal University, Guilin, Guangxi 541004, China
2.School of Big Data, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
[1] YU M,GUO Z,YU Y,et al.Spatiotemporal feature descriptor for micro-expression recognition using local cube binary pattern[J].IEEE Access,2019,7:214-225.
[2] EKMAN P,FRIESEN W V,HAGER J C.A technique for the measurement of facial action[J].Palo Alto,1978,47(2):126-138.
[3] RIM D,HONARI S,HASAN M K,et al.Improving facial analysis and performance driven animation through disentangling identity and expression[J].Image and Vision Computing,2016,52:125-140.
[4] GAO Y,MA J,YUILLE A L.Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples[J].IEEE Transactions on Image Processing,2017,26(5):2545-2560.
[5] 程学军,邢萧飞.利用改进型VGG标签学习的表情识别方法[J].计算机工程与设计,2022,43(4):1134-1144.
CHENG X J,XING X F.Expression recognition method based on improved VGG tag learning[J].Computer Engineering and Design,2022,43(4):1134-1144.
[6] LI X,HU X,YANG J.Spatial group-wise enhance:improving semantic feature learning in convolutional networks[J].arXiv:1905.09646,2019.
[7] LI S,DENG W.Reliable crowdsourcing and deep locality-preserving learning for unconstrained facial expression recognition[J].IEEE Transactions on Image Processing,2019,28(1):356-370.
[8] MOLLAHOSSEINI A,HASANI B,MAHOOR M H.AffectNet:a database for facial expression,valence,and arousal computing in the wild[J].IEEE Transactions on Affective Computing,2017,10(1):18-31.
[9] LIN M,CHEN Q,YAN S.Network in network[J].arXiv:1312.4400,2013.
[10] TAN M,LE Q.EfficientNetv2:smaller models and faster training[C]//Proceedings of the 38th International Conference on Machine Learning,2021:10096-10106.
[11] LIU Z,LIN Y,CAO Y,et al.Swin transformer:hierarchical vision transformer using shifted windows[J].arXiv:2103.14030,2021.
[12] ZHAO Z,LIU Q,ZHOU F.Robust lightweight facial expression recognition network with label distribution training[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence,2021:3510-3519.
[13] DENG J,GUO J,VERVERAS E,et al.RetinaFace:single-shot multi-level face localisation in the wild[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020.
[14] LOSHCHILOV I,HUTTER F.SGDR:stochastic gradient descent with warm restarts[J].arXiv:1608.03983,2016.
[15] 唐宏,向俊玲,陈海涛,等.基于多区域融合轻量级人脸表情识别方法[J].激光与光电子学进展,2023,60(6):0610006.
TANG H,XIANG J L,CHEN H T,et al.Lightweight facial expression recognition method based on multi-region fusion[J].Laser & Optoelectronics Progress,2023,60(6):0610006.
[16] ZENG J,SHAN S,CHEN X.Facial expression recognition with inconsistently annotated datasets[C]//Proceedings of the 15th European Conference on Computer Vision,2018:222-237.
[17] LI Y,ZENG J,SHAN S,et al.Occlusion aware facial expression recognition using CNN with attention mechanism[J].IEEE Transactions on Image Processing,2019,28(5):2439-2450.
[18] CHEN S,WANG J,CHEN Y,et al.Label distribution learning on auxiliary label space graphs for facial expression recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:13984-13993.
[19] LI Y,ZENG J,SHAN S,et al.Occlusion aware facial expression recognition using CNN with attention mechanism[J].IEEE Transactions on Image Processing,2018,28(5):2439-2450.
[20] LI Y,LU Y,LI J,et al.Separate loss for basic and compound facial expression recognition in the wild[C]//Proceedings of the 2019 Asian Conference on Machine Learning,2019:897-911.
[21] WEN Z,LIN W,WANG T,et al.Distract your attention:multi-head cross attention network for facial expression recognition[J].arXiv:2109.07270,2021.
[22] WANG K,PENG X,YANG J,et al.Suppressing uncertainties for large-scale facial expression recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:6897-6906.
[23] FARZANEH A H,QI X.Discriminant distribution-agnostic loss for facial expression recognition in the wild[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2020:406-407.
[24] KOLLIAS D,CHENG S,VERVERAS E,et al.Deep neural network augmentation:generating faces for affect analysis[J].arXiv:1811.05027,2018.
[25] LI H,SUI M,ZHAO F,et al.MVT:mask vision transformer for facial expression recognition in the wild[J].arXiv:2106.04520,2021.
[26] WANG K,PENG X,YANG J,et al.Region attention networks for pose and occlusion robust facial expression recognition[J].IEEE Transactions on Image Processing,2020,29:4057-4069.
[27] LIU Y,PENG J,ZENG J,et al.Pose-adaptive hierarchical attention network for facial expression recognition[J].arXiv:1905.10059,2019.
[28] VO T H,LEE G S,YANG H J,et al.Pyramid with super resolution for in-the-wild facial expression recognition[J].IEEE Access,2020,8:131988-132001.
[29] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,2017:618-626.