Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (20): 51-66.DOI: 10.3778/j.issn.1002-8331.2212-0050
• Research Hotspots and Reviews • Previous Articles Next Articles
WANG Xu, ZHU Qixin, ZHU Yonghong
Online:
2023-10-15
Published:
2023-10-15
王旭,朱其新,朱永红
WANG Xu, ZHU Qixin, ZHU Yonghong. Review of Path Planning Algorithms for Mobile Robots[J]. Computer Engineering and Applications, 2023, 59(20): 51-66.
王旭, 朱其新, 朱永红. 面向二维移动机器人的路径规划算法综述[J]. 计算机工程与应用, 2023, 59(20): 51-66.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2212-0050
[1] FRYER D M,MARSHALL J C.The motives of Jacques de Vaucanson[J].Technology and Culture,1979,20(2):257-269. [2] CARRERA R,LOISEAU D,ROUX O,Androids,the Jaquet-Droz automatons[M].Lausanne:Scriptar and Franco Maria Ricci,1979. [3] RUBIO F,VALERO F,LLOPIS-ALBERT C.A review of mobile robots:concepts,methods,theoretical framework,and applications[J].Int J Adv Robot Syst,2019,16(2):1729881419839596. [4] 贾士伟,李军民,邱权,等.基于激光测距仪的温室机器人道路边缘检测与路径导航[J].农业工程学报,2015,31(13):39-45. JIA S W,LI J M,QIU Q,et al.New corridor edge detection and navigation for greenhouse mobile robots based on laser scanner[J].Journal of Agricultural Engineering,2015,31(13):39-45. [5] CHAE H W,CHOI J H,SONG J B.Robust and autonomous stereo visual-inertial navigation for non-holonomic mobile robots[J].IEEE Transactions on Vehicular Technology,2020,69(9):9613-9623. [6] ALI M A H,SHANONO I H.Path planning methods for mobile robots:a systematic and bibliometric review[J].ELEKTRIKA-J Elect Eng,2020,19(3):14-34. [7] 王天然,曲道奎.工业机器人控制系统的开放体系结构[J].机器人,2002(3):256-261. WANG T R,QU D K.Open system arch itecture for control system for industrial robot[J].Robot,2002(3):256-261. [8] 董文杰,霍伟.受非完整约束移动机器人的跟踪控制[J].自动化学报,2000(1):5-10. DONG W J,HUO W.Tracking control of mobile robots with nonholonomic constraint[J].Acta Automatica Sinica,2000(1):5-10. [9] KAZEMI M,GUPTA K K,MEHRANDEZH M.Randomized kinodynamic planning for robust visual servoing[J].IEEE Transactions on Robotics,2013,29(5):1197-1211. [10] GORETKIN G,PEREZ A,PLATT R,et al.Optimal samplingbased planning for linear-quadratic kinodynamic systems[C]//Proc IEEE ICRA,2013:2429-2436. [11] 霍凤财,迟金,黄梓健,等.移动机器人路径规划算法综述[J].吉林大学学报(信息科学版),2018,36(6):639-647. HUO F C,CHI J,HUANG Z J,et al.Review of path planning for mobile robots[J].Journal of Jilin University(Information Science Edition),2018,36(6):639-647. [12] 杨韵,王成彦,巫凯旋,等.移动机器人全局路径规划算法综述[J].信息记录材料,2022,23(3):29-32. YANG Y,WANG C Y,WU K X,et al.Overview of global path planning algorithms for mobile robots[J].Information Recording Materials,2022,23(3):29-32. [13] MAEKAWA T,NODA T,TAMURA S,et al.Curvature continuous path generation for autonomous vehicle using B-spline curves[J].Computer-Aided Design,2010,42(4):350-359. [14] ELLEKILDE L P,PETERSEN H G.Motion planning efficient trajectories for industrial bin-picking[J].The International Journal of Robotics Research,2013,32(9/10):991-1004. [15] JAN G E,SUN C C,TSAI W C,et al.An [O(nlogn)] shortest path algorithm based on delaunay triangulation[J].IEEE/ASME Trans Mechatron,2013,19(2):660-666. [16] ELBANHAWI M,SIMIC M,JAZAR R.Autonomous mobile robot path planning:a novel roadmap approach[J].Appl Mech Mater,2013,373/374/375:246-254. [17] MARTíNEZ-ALFARO H,GóMEZ-GARCíA S.Mobile robot path planning and tracking using simulated annealing and fuzzy logic control[J].Expert Syst Appl,1998,15(3/4):421-429. [18] SERAJI H,HOWARD A.Behavior-based robot navigation on challenging terrain:a fuzzy logic approach[J].IEEE Trans Robot Autom,2002,18(3):308-321. [19] JANGLOVá D.Neural networks in mobile robot motion[J].J Adv Robot Syst,2004,1(1):15-22. [20] GERKE M.Genetic path planning for mobile robots[C]//Proc Amer Control Conf,1999:2424-2429. [21] HU Y,YANG S X,XU L Z,et al.A knowledge based genetic algorithm for path planning in unstructured mobile robot environments[C]//2004 IEEE International Conference on Robotics and Biomimetics,2004:767-772. [22] GARCIA M A P,MONTIEL O,CASTILLO O,et al.Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation[J].Applied Soft Computing,2009,9(3):1102-1110. [23] 徐国保,尹怡欣,周美娟.智能移动机器人技术现状及展望[J].机器人技术与应用,2007(2):29-34. XU G B,YIN Y X,ZHOU M J.Present situation and prospect of the technologies of intelligent mobile robots[J].Robot Technology and Application,2007(2):29-34. [24] DIJKSTRA E W.A note on two problems in connexion with graphs[J].Numerische Mathematik,1959,1:269-271. [25] 乐阳,龚健雅.Dijkstra最短路径算法的一种高效率实现[J].武汉测绘科技大学学报,1999(3):209-212. LE Y,GONG J Y.An efficient implementation of shortest path algorithm based on Dijikstra algorithm[J].Journal of Wuhan Technical University of Surveying and Mapping,1999(3):209-212. [26] HARTOMO K,ISMANTO B,NUGRAHA A,et al.Searching the shortest route to distribute disaster’s logistical assistance using Dijkstra method[J].Journal of Physics:Conference Series,2019,1402(7):077014. [27] MING Y,LI Y,ZHANG Z,et al.A survey of path planning algorithms for autonomous vehicles[J].SAE International Journal of Commercial Vehicles,2021,14:97-109. [28] 张瑜,宋荆洲,张琪祁.基于改进动态窗口法的户外清扫机器人局部路径规划[J].机器人,2020,42(5):617-625. ZHANG Y,SONG J Z,ZHANG Q Q.Local path planning of outdoor cleaning robot based on an improved DWA[J].Robot,2020,42(5):617-625. [29] WAI R J,LIU C M,LIN Y W.Design of switching path-planning control for obstacle avoidance of mobile robot[J].Journal of the Franklin Institute,2011,348(4):718-737. [30] ALSHAMMREI S,BOUBAKER S,KOLSI L.Improved Dijkstra algorithm for mobile robot path planning and obstacle avoidance[J].Comput Mater Contin,2022,72:5939-5954. [31] DURAKLI Z,NABIYEV V.A new approach based on Bezier curves to solve path planning problems for mobile robots[J].Journal of Computational Science,2022,58:101540. [32] 王辉,朱龙彪,王景良,等.基于Dijkstra-蚁群算法的泊车系统路径规划研究[J].工程设计学报,2016,23(5):489-496. WANG H,ZHU L B,WANG J L,et al.Research on path planing of parking system based on Dijkstra-ant colony hybrid algorithm[J].Journal of Engineering Design,2016,23(5):489-496. [33] 李全勇,李波,张瑞,等.基于改进Dijkstra算法的AGV路径规划研究[J].机械工程与自动化,2021(1):23-25. LI Q Y,LI B,ZHANG R,et al.Research on AGV path planning based on improved Dijkstra algorithm[J].Mechanical Engineering and Automation,2021(1):23-25. [34] 姜辰凯,李智,盘书宝,等.基于改进Dijkstra算法的AGVs无碰撞路径规划[J].计算机科学,2020,47(8):272-277. JIANG C K,LI Z,PAN S B,et al.Collision-free path planning of AGVs based on improved Dijkstra algorithm[J].Computer Science,2020,47(8):272-277. [35] 李梦雅,王军,沈航.洪灾应急疏散路径规划算法优化[J].地球信息科学学报,2016,18(3):362-368. LI M Y,WANG J,SHEN H.Optimization of evacuation routes planning algorithms for flood events[J].Journal of Geo-Information Science,2016,18(3):362-368. [36] HART P E,NILSSON N J,RAPHAEL B.A formal basis for the heuristic determination of minimum cost paths[J].IEEE Transactions on Systems Science and Cybernetics,1968,4(2):100-107. [37] BENGIO Y.Deep learning of representations:looking forward[C]//Proc Int Conf Stat Lang Speech Process,2013:1-37. [38] SINGH Y,SHARMA S,SUTTON R,et al.A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents[J].Ocean Engineering,2018,169:187-201. [39] YANG J M,TSENG C M,TSENG P S.Path planning on satellite images for unmanned surface vehicles[J].International Journal of Naval Architecture and Ocean Engineering,2015,7(1):87-99. [40] 孙刚,伍江江,陈浩,等.一种基于切比雪夫距离的隐式偏好多目标进化算法[J].计算机科学,2022,49(6):297-304. SUN G,WU J J,CHEN H,et al.Hidden preference-based multi-objective evolutionary algorithm based on Chebyshev distance[J].Computer Science,2022,49(6):297-304. [41] WANG X D.Path planning of scenic spots based on improved a* algorithm[J].Scientific Reports,2022,12:1320. [42] ERKE S,BIN D,YIMING N,et al.An improved A-star based path planning algorithm for autonomous land vehicles[J].International Journal of Advanced Robotic Systems,2020,17(5):1729881420962263. [43] XIONG X,MIN H,YU Y,et al.Application improvement of A* algorithm in intelligent vehicle trajectory planning[J].Math Biosci Eng,2021,18(1):1-21. [44] ZHENG T,XU Y,ZHENG D.AGV path planning based on improved A-star algorithm[C]//2019 IEEE 3rd Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC),2019:1534-1538. [45] ZHANG Y,LI L,LIN H C,et al.Development of path planning approach using improved A-star algorithm in AGV system[J].Journal of Internet Technology,2019,20(3):915-924. [46] 付丽霞,任玉洁,张勇,等.基于改进平滑A~*算法的移动机器人路径规划[J].计算机仿真,2020,37(8):271-276. FU L X,REN Y J,ZHANG Y,et al.Path planning of mobile robot based on improved smoothing A* algorithms[J].Computer Simulation,2020,37(8):271-276. [47] SONG R,LIU Y,BUCKNALL R.Smoothed A* algorithm for practical unmanned surface vehicle path planning[J].Applied Ocean Research,2019,83:9-20. [48] WANG H,YIN P,ZHENG W,et al.Mobile robot path planning based on improved A* algorithm and dynamic window method[J].Robot,2020,42(3):92-99. [49] LAVALLE S.Rapidly-exploring random trees:a new tool for path planning[R].Research Report,1998. [50] 康亮,赵春霞,郭剑辉.未知环境下改进的基于RRT算法的移动机器人路径规划[J].模式识别与人工智能,2009,22(3):337-343. KANG L,ZHAO C X,GUO J H.Improved path planning based on rapidly-exploring random tree for mobile robot in unknown environment[J].Pattern Recognition and Artificial Intelligence,2009,22(3):337-343. [51] 陈秋莲,蒋环宇,郑以君.机器人路径规划的快速扩展随机树算法综述[J].计算机工程与应用,2019,55(16):10-17. CHEN Q L,JIANG H Y,ZHENG Y J.Summary of rapidly-exploring random tree algorithm in robot path planning[J].Computer Engineering and Applications,2019,55(16):10-17. [52] LI B H,CHEN B.An adaptive rapidly-exploring random tree[J].IEEE/CAA Journal of Automatica Sinica,2021,9(2):283-294. [53] KANG J G,LIM D W,CHOI Y S,et al.Improved RRT-connect algorithm based on triangular inequality for robot path planning[J].Sensors,2021,21(2):333. [54] JEONG I B,LEE S J,KIM J H.Quick-RRT*:triangular inequality-based implementation of RRT* with improved initial solution and convergence rate[J].Expert Systems with Applications,2019,123:82-90. [55] LIAO B,WAN F,HUA Y,et al.F-RRT*:an improved path planning algorithm with improved initial solution and convergence rate[J].Expert Systems with Applications,2021,184:115457. [56] WANG W,ZUO L,XU X.A learning-based multi-RRT approach for robot path planning in narrow passages[J].J Intelligent & Robotic Systems,2018,90(1/2):81-100. [57] LAI T,RAMOS F,FRANCIS G.Balancing global exploration and local-connectivity exploitation with rapidly-exploring random disjointedtrees[C]//Proc Int Conf Robotics and Automation(ICRA),2019:5537-5543. [58] LAI T,MORERE P,RAMOS F,et al.Bayesian local sampling based planning[J].IEEE Robotics and Automation Letters,2020,5(2):1954-1961. [59] 张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005(2):439-443. ZHANG H D,ZHENG R,CEN Y W.Present situation and future development of mobile robot path planning technology[J].Journal of System Simulation,2005(2):439-443. [60] ZHANG Z J,LU R,ZHAO M,et al.Robot path planning based on genetic algorithm with hybrid initialization method[J].Journal of Intelligent & Fuzzy Systems,2022,42(3):2041-2056. [61] LEE J,KIM D W.An effective initialization method for genetic algorithm-based robot path planning using a directed a cyclic graph[J].Information Sciences,2016,332:1-18. [62] HAO K,ZHAO J,YU K,et al.Path planning of mobile robots based on a multi-population migration genetic algorithm[J].Sensors,2020,20(20):5873. [63] LI K R,HU Q,LIU J.Path planning of mobile robot based on improved multiobjective genetic algorithm[J].Wireless Communications and Mobile Computing,2021:8836615. [64] 张铮,柯子鹏,周嘉政,等.基于改进多目标自适应遗传算法的机器人路径规划[J].西安理工大学学报,2023,39(1):69-78. ZHENG Z,KE Z P,ZHOU J Z,et al.Robot path planning based on improved multi-objective adaptive genetic algorithm[J].Journal of Xi’an University of Technology,2023,39(1):69-78. [65] LAMINI C,BENHLIMA S,ELBEKRI A.Genetic algorithm based approach for autonomous mobile robot path planning[J].Procedia Computer Science,2018,127:180-189. [66] ZHANG Q B,LI X D.A new crossover mechanism for genetic algorithms with variable-length chromosomes for path optimization problems[J].Expert Systems with Applications,2016,60:183-189. [67] PATLE B K,PARHI D R K,JAGADEESH A,et al.Matrix-binary codes based genetic algorithm for path planning of mobile robot[J].Computers & Electrical Engineering,2018,67:708-728. [68] DOOSTIE S,HOSHIAR A K,NAZARAHARI M,et al.Optimal path planning of multiple nanoparticles in continuous environment using a novel adaptive genetic algorithm[J].Precision Engineering,2018,53:65-78. [69] NI J J,WANG K,HUANG H,et al.Robot path planning based on an improved genetic algorithm with variable length chromosome[C]//2016 12th International Conference on Natural Computation,Fuzzy Systems and Knowledge Discovery(ICNC-FSKD),2016:145-149. [70] CHEN J W,ZHU H,ZHANG L,et al.Research on fuzzy control of path tracking for underwater vehicle based on genetic algorithm optimization[J].Ocean Engineering,2018,156:217-223. [71] ROBERGE V,TARBOUCHI M.Massively parallel hybrid algorithm on embedded graphics processing unit for unmanned aerial vehicle path planning[J].International Journal of Digital Signals and Smart Systems,2018,2(1):68-93. [72] KUMAR A,KUMAR P B,PARHI D R.Intelligent navigation of humanoids in cluttered environments using regression analysis and genetic algorithm[J].Arabian Journal for Science and Engineering,2018,43:1-24. [73] KHATIB O.Real-time obstacle avoidance for manipulators and mobile robots[C]//IEEE International Conference on Robotics and Automation,1985:500-505. [74] 樊晓平,李双艳,陈特放.基于新人工势场函数的机器人动态避障规划[J].控制理论与应用,2005(5):29-33. FAN X P,LI S Y,CHEN T F.Dynamic obstacle-avoiding path plan for robots based on a new artificial potential field function[J].Control Theory and Application,2005(5):29-33. [75] ZHU Q D,YAN Y,XING Z.Robot path planning based on artificial potential field approach with simulated annealing[C]//Sixth International Conference on Intelligent Systems Design and Applications,2006:622-627. [76] ABDALLA T Y,ABED A A,AHMED A A.Mobile robot navigation using PSO-optimized fuzzy artificial potential field with fuzzy control[J].Journal of Intelligent & Fuzzy Systems,2017,32(6):3893-3908. [77] ZHANG C.Path planning for robot based on chaotic artificial potential field method[C]//IOP Conference Series:Materials Science and Engineering,2018. [78] WANG H,HUANG Y,KHAJEPOUR A,et al.Local path planning for autonomous vehicles:crash mitigation[C]//Proceedings of the 2018 IEEE Intelligent Vehicles Symposium(IV),Changshu,China,June 26-30,2018:1062-1067. [79] WANG P W,GAO S,LI L,et al.Obstacle avoidance path planning design for autonomous driving vehicles based on an improved artificial potential field algorithm[J].Energies,2019,12(12):2342. [80] YAO Q F,ZHENG Z,QI L,et al.Path planning method with improved artificial potential field—a reinforcement learning perspective[J].IEEE Access,2020,8:135513-135523. [81] LIN Z N,YUE M,CHEN G,et al.Path planning of mobile robot with PSO-based APF and fuzzy-based DWA subject to moving obstacles[J].Transactions of the Institute of Measurement and Control,2022,44(1):121-132. [82] DUHé J F,VICTOR S,MELCHIOR P.Contributions on artificial potential field method for effective obstacle avoidance[J].Fractional Calculus and Applied Analysis,2021,24(2):421-446. [83] STENTZ A.The focussed D* algorithm for real-time replanning[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence,1995:1652-1659. [84] DRAKE D,KOZIOL S,CHABOT E.Mobile robot path planning with a moving goal[J].IEEE Access,2018,6:12800-12814. [85] PRZYBYLSKI M,PUTZ B.D* extra lite:a dynamic A* with search-tree cutting and frontier-gap repairing[J].International Journal of Applied Mathematics and Computer Science,2017,27:273-290. [86] XU X N,CHEN J,LIAO Y,et al.Auto-splitting D* lite path planning for large disaster area[J].Intelligent Service Robotics,2022:1-18. [87] YU J H,YANG M,ZHAO Z,et al.Path planning of unmanned surface vessel in an unknown environment based on improved D* lite algorithm[J].Ocean Engineering,2022,266:112873. [88] SUN B,ZHANG W,LI S,et al.Energy optimised D* AUV path planning with obstacle avoidance and ocean current environment[J].The Journal of Navigation,2022:1-20. [89] REN Z Q,RATHINAM S,LIKHACHEV M,et al.Multi-objective path-based D* lite[J].IEEE Robotics and Automation Letters,2022,7(2):3318-3325. [90] LI M Z,CHUANG M L,KUO S T,et al.UAV swarm real-time rerouting by edge computing D* lite algorithm[J].Applied Sciences,2022,12(3):1056. [91] KIRKPATRICK S,GELATT JR C D,VECCHi P.Optimization by simulated-annealing[J].Science,1983,220:671-680. [92] TAVARES R S,MARTINS T C,TSUZUKI M S G.Simulated annealing with adaptive neighborhood:a case study in off-line robot path planning[J].Expert Systems with Applications,2011,38(4):2951-2965. [93] GANESHMURTHY M S,SURESH G R.Path planning algorithm for autonomous mobile robot in dynamic environment[C]//2015 3rd International Conference on Signal Processing,Communication and Networking(ICSCN),2015:1-6. [94] SUN Q,ZHANG H,DANG J.Two-stage vehicle routing optimization for logistics distribution based on HSA-HGBS algorithm[J].IEEE Access,2022,10:99646-99660. [95] MIAO H,TIAN Y C.Dynamic robot path planning using an enhanced simulated annealing approach[J].Applied Mathematics and Computation,2013,222:420-437. [96] ZHANG Q,JIA C M,QIANG L.Path planning based quadtree representation for mobile robot using hybrid-simulated annealing and ant colony optimization algorithm[C]//Proceedings of the 10th World Congress on Intelligent Control and Automation,2012. [97] ZHAI L Z,FENG S.A novel evacuation path planning method based on improved genetic algorithm[J].Journal of Intelligent & Fuzzy Systems,2022:1-11. [98] CORDóN O,HERRERA F,HERRERA-VIEDMA E,et al.Genetic algorithms and fuzzy logic in control processes[J].Control Sci,1996,5:135-168. [99] 陈卫东,李宝霞,朱奇光.模糊控制在移动机器人路径规划中的应用[J].计算机工程与应用,2009,45(31):221-223. CHEN W D,LI B X,ZHU Q G.Application of fuzzy control in mobile robot path planning[J].Computer Engineering and Applications,2009,45(31):221-223. [100] SONG Q,ZHAO Q,WANG S,et al.Dynamic path planning for unmanned vehicles based on fuzzy logic and improved ant colony optimization[J].IEEE Access,2020,8:62107-62115. [101] MIRZA N.Robotic path planning and fuzzy neural networks[J].Int Arab J Inf Technol,2020,17:615-620. [102] WANG N,XU H,LI C,et al.Hierarchical path planning of unmanned surface vehicles:a fuzzy artificial potential field approach[J].International Journal of Fuzzy Systems,2021,23(6):1797-1808. [103] LEE D.A path planning algorithm for AUV using fuzzy logic and artificial potential field[J].Journal of Institute of Control Robotics and Systems,2022,28(6):589-595. [104] SUN B,ZHU D Q,YANG S X.An optimized fuzzy control algorithm for three-dimensional AUV path planning[J].Int J Fuzzy Syst,2018,20(2):597-610. [105] GHARAJEH M S,JOND H B.An intelligent approach for autonomous mobile robots path planning based on adaptive neuro-fuzzy inference system[J].Ain Shams Engineering Journal,2022,13(1):101491. [106] WANG J H,XU Z,ZHENG X,et al.A fuzzy logic path planning algorithm based on geometric landmarks and kinetic constraints[J].Information Technology and Control,2022,51(3):499-514. [107] DORIGO M.Optimization,learning and natural algorithms[D].Politecnico di Milano,1992. [108] 游晓明,刘升,吕金秋.一种动态搜索策略的蚁群算法及其在机器人路径规划中的应用[J].控制与决策,2017,32(3):552-556. YOU X M,LIU S,LV J Q.Ant colony algorithm based on dynamic search strategy and its application on path planning of robot[J].Control and Decision-making,2017,32(3):552-556. [109] 江明,王飞,葛愿,等.基于改进蚁群算法的移动机器人路径规划研究[J].仪器仪表学报,2019,40(2):113-121. JIANG M,WANG F,GE Y,et al.Research on path planning of mobile robot based on improved ant colony algorithm[J].Chinese Journal of Scientific Instrument,2019,40(2):113-121. [110] 张九龙,王晓峰,芦磊,等.若干新型智能优化算法对比分析研究[J].计算机科学与探索,2022,16(1):88-105. ZHANG J L,WANG X F,LU L,et al.Analysis and research of several new intelligent optimization algorithms[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):88-105. [111] UTKARSH R,MADHU K.Mobile robot path planning with modified ant colony optimization[J].Int J Bio-Inspired Comput,2017,9:106-113. [112] WANG L N,WANG H,YANG X,et al.Research on smooth path planning method based on improved ant colony algorithm optimized by Floyd algorithm[J].Frontiers in Neurorobotics,2022,16:955179. [113] LUO Q,WANG H,ZHENG Y,et al.Research on path planning of mobile robot based on improved ant colony algorithm[J].Neural Computing and Applications,2020,32(6):1555-1566. [114] AKKA K,KHABER F.Mobile robot path planning using an improved ant colony optimization[J].International Journal of Advanced Robotic Systems,2018,15(3):1729881418774673. [115] URIOL R,MORAN A.Mobile robot path planning in complex environments using ant colony optimization algorithm[C]//Proceedings of the 3rd International Conference on Control,Automation and Robotics(ICCAR),Nagoya,Japan,April 24-26,2017:15-21. [116] DAI X L,LONG S,ZHANG Z.Mobile robot path planning based on ant colony algorithm with A? heuristic method[J].Front Neurorobotics,2019,13:15. [117] YANG H,QI J,MIAO Y,et al.A new robot navigation algorithm based on a double-layer ant algorithm and trajectory optimization[J].IEEE Transactions on Industrial Electronics,2018,66(11):8557-8566. [118] 李丹.改进群智能优化算法的海上物流配送路径优化方法[J].舰船科学技术,2020,42(16):184-186. LI D.Optimization method of marine logistics distribution path based on improved swarm intelligence optimization algorithm[J].Ship Science and Technology,2020,42(16):184-186. [119] 张荣霞,武长旭,孙同超,等.深度强化学习及在路径规划中的研究进展[J].计算机工程与应用,2021,57(19):44-56. ZHANG R X,WU C X,SUN T C,et al.Progress on deep reinforcement learning in path planning[J].Computer Engineering and Applications,2021,57(19):44-56. [120] SUTTON R S,BARTO A G.Introduction to reinforcement learning[M].2nd ed.London,UK:MIT Press,2018:1-528. [121] BAE H,KIM G,KIM J,et al.Multi-robot path planning method using reinforcement learning[J].Appl Sci,2019,9:3057. [122] MAW A A,TYAN M,NGUYEN T A,et al.iADA*-RL:anytime graph-based path planning with deep reinforcement learning for an autonomous UAV[J].Applied Sciences,2021,11(9):3948. [123] ZENG J Y,LIANG Z H.Research on the application of supervised reinforcement learning in path planning[J].Comput Appl Softw,2018,35:185-188. [124] LOW E S,ONG P,CHEAH K C.Solving the optimal path planning of a mobile robot using improved Q-learning[J].Robotics and Autonomous Systems,2019,115:143-161. [125] BONNY T,KASHKASH M.Highly optimized q-learning-based bees approach for mobile robot path planning in static and dynamic environments[J].Journal of Field Robotics,2022,39(4):317-334. [126] ABDI A,RANJBAR M H,PARK J H.Computer vision-based path planning for robot arms in three-dimensional workspaces using q-learning and neural networks[J].Sensors,2022,22(5):1697. [127] SAHU B,DAS P K,RANJAN KABAT M.Multi-robot cooperation and path planning for stick transporting using improved Q-learning and democratic robotics PSO[J].Journal of Computational Science,2022,60:101637. [128] 钟倩漪,钱谦,伏云发,等.粒子群优化算法在关联规则挖掘中的研究综述[J].计算机科学与探索,2021,15(5):777-793. ZHONG Q Y,QIAN Q,FU Y F,et al.Survey of particle swarm optimization algorithm for association rule mining[J].Journal of Frontiers of Computer Science and Technology,2021,15(5):777-793. [129] KIM H W,LEE W C.Real-time path planning through Q-learning’s exploration strategy adjustment[C]//2021 International Conference on Electronics,Information,and Communication(ICEIC),2021:1-3. [130] GUO X W,PENG G,MENG Y.A modified q-learning algorithm for robot path planning in a digital twin assembly system[J].The International Journal of Advanced Manufacturing Technology,2022,119(5):3951-3961. [131] ASGHARI A,SOHRABI M K,YAGHMAEE F.Task scheduling,resource provisioning,and load balancing on scientific workflows using parallel SARSA reinforcement learning agents and genetic algorithm[J].The Journal of Supercomputing,2021,77:2800-2828. [132] SADHU A K,KONAR A.An efficient computing of correlated equilibrium for cooperative Q-learning-based multi-robot planning[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,50(8):2779-2794. [133] OROZCO-ROSAS U,MONTIEL O,SEPúLVEDA R.Parallel bacterial potential field algorithm for path planning in mobile robots:a GPU implementation[J].Fuzzy Logic Augmentation of Neural and Optimization Algorithms:Theoretical Aspects and Real Applications,2018:207-222. [134] 董培方,张志安,梅新虎,等.引入势场及陷阱搜索的强化学习路径规划算法[J].计算机工程与应用,2018,54(16):129-134. DONG P F,ZHANG Z A,MEI X H,et al.Reinforcement learning path planning algorithm based on gravitational potential field and trap search[J].Computer Engineering and Applications,2018,54(16):129-134. [135] KUNDU S,PARHI D R.Navigation of underwater robot based on dynamically adaptive harmony search algorithm[J].Memetic Computing,2016,8(2):125-146. [136] GHOSH S,PANIGRAHI P K,PARHI D R.Analysis of FPA and BA meta‐heuristic controllers for optimal path planning of mobile robot in cluttered environment[J].IET Science,Measurement & Technology,2017,11(7):817-828. [137] PARHI D R,KUNDU S.Navigational control of underwater mobile robot using dynamic differential evolution approach[J].Proceedings of the Institution of Mechanical Engineers,Part M:Journal of Engineering for the Maritime Environment,2017,231(1):284-301. [138] FEVGAS G,LAGKAS T,ARGYRIOU V,et al.Coverage path planning methods focusing on energy efficient and cooperative strategies for unmanned aerial vehicles[J].Sensors,2022,22(3):1235. |
[1] | PENG Zexin, ZENG Bi, LIU Jianqi. Global Localization Method Based on Global Feature Point Matching [J]. Computer Engineering and Applications, 2023, 59(3): 264-275. |
[2] | WU Bin, ZHANG Xin, VIALOVA Varvara. Research on Local Path Planning and Path Tracking of AGV for Real Working Conditions [J]. Computer Engineering and Applications, 2023, 59(20): 295-305. |
[3] | WANG Weijian, WANG Yong, YANG Xiao, LYU Zongzhe, WU Zongyi. Research on Reinforcement Learning of Pedestrian Avoidance Approach for Mobile Robots [J]. Computer Engineering and Applications, 2023, 59(18): 316-322. |
[4] | QIAO Lei, LI Zonggang, DU Yajiang. Formation Control of Non-Holonomic Wheeled Mobile Robot in Finite Time [J]. Computer Engineering and Applications, 2023, 59(13): 74-81. |
[5] | CHEN Dan, WU Xin. Research on Improved Laser SLAM Algorithm for Mobile Robots [J]. Computer Engineering and Applications, 2022, 58(4): 163-168. |
[6] | DONG Rong, LI Maohai, LIN Rui, LIU Shiqi, DING Wen. Research of Outdoor Robot Localization Method on Fusion of Multi-camera and IMU [J]. Computer Engineering and Applications, 2022, 58(3): 289-296. |
[7] | HUANG Mengtao, LI Zhiwei. Path Planning of Mobile Robot Based on Improved ARA* Algorithm [J]. Computer Engineering and Applications, 2022, 58(24): 291-297. |
[8] | DING Chengjun, YAN Xinyi, FENG Yubo, JIA Lizhen. Improved Algorithm of AGV Local Path Planning Based on APF [J]. Computer Engineering and Applications, 2022, 58(22): 305-312. |
[9] | BAI Xiong, LU Jilin, LU Kuan, CHEN Pengyun, CUI Junjie, LIU Zehua. Research on Path Planning with Improved A* Algorithm Fusing Environmental Information and Motion Constraints [J]. Computer Engineering and Applications, 2022, 58(18): 311-317. |
[10] | WANG Di, LI Caihong, GUO Na, LIU Guoming, GAO Tengteng. Local Path Planning of Mobile Robot Based on Fuzzy Potential Field Method [J]. Computer Engineering and Applications, 2021, 57(6): 212-218. |
[11] | JIANG Lin, FANG Dongjun, LEI Bin, LI Weigang. Research Status and Trend of Navigation Algorithm for Mobile Robot with Monocular Vision [J]. Computer Engineering and Applications, 2021, 57(5): 1-9. |
[12] | YANG Lingyao, ZHANG Aihua, ZHANG Jie, SONG Jiqiang. Real-Time Path Planning of Velocity Potential for Robot in Grid Map Environment [J]. Computer Engineering and Applications, 2021, 57(24): 290-295. |
[13] | ZHANG Ziran, HUANG Weihua, CHEN Yang, ZHANG Zheng, LI Ziyuan. Improved Ant Colony Path Planning Algorithm Based on Bidirectional Search [J]. Computer Engineering and Applications, 2021, 57(21): 270-277. |
[14] | TU Rui, WANG Wenge, LU Chengyang. Real-Time Sampling Path Replanning of Mobile Robot [J]. Computer Engineering and Applications, 2021, 57(20): 157-163. |
[15] | LIN Hanxi, XIANG Dan, OUYANG Jian, LAN Xiaodong. Review of Path Planning Algorithms for Mobile Robots [J]. Computer Engineering and Applications, 2021, 57(18): 38-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||