Adaptively Efficient Deep Cross-Modal Hash Retrieval Based on Incremental Learning
ZHOU Kun, XU Liming, ZHENG Bochuan, XIE Yicai
1.School of Computer Science, China West Normal University, Nanchong, Sichuan 637009, China
2.Internet of Things Perception and Big Data Analysis Key Laboratory of Nanchong, Nanchong, Sichuan 637009, China
3.School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
[1] 庾骏.跨模态哈希学习算法及其应用研究[D].无锡:江南大学,2020.
YU J.Study of cross-modal hashing algorithms with applications[D].Wuxi:Jiangnan University,2020.
[2] PENG Y,HUANG X,ZHAO Y.An overview of cross-media retrieval:concepts,methodologies,benchmarks and challenges[J].IEEE Transactions on Circuits and Systems for Video Technology,2018,28(9):473-486.
[3] MA L,LI H,MENG F,et al.Global and local semantics-preserving based deep hashing for cross-modal retrieval[J].Neurocomputing,2018,312(1):49-62.
[4] JIANG Q,LI W.Discrete latent factor model for cross-modal hashing[J].IEEE Transactions on Image Processing,2019,28(7):3490-3501.
[5] LI N,LI C,DENG C,et al.Deep joint semantic embedding hashing[C]//International Joint Conference on Artificial Intelligence,2018:2397-2403.
[6] SHEN Y,LIU L,SHAO L,et al.Deep binaries:encoding semantic rich cues for efficient textual-visual cross retrieval[C]//IEEE International Conference on Computer Vision,2017:4117-4126.
[7] YANG E,DENG C,LI C,et al.Shared predictive cross-modal deep quantization[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(11):5292-5303.
[8] 康培培,林泽航,杨振国,等.语义保持哈希在跨模态检索中的应用[J].计算机工程与应用,2022,58(21):149-155.
KANG P P,LIN Z H,YANG Z G,et al.Semantic preserving hash for cross-modal retrieval[J].Computer Engineering and Applications,2022,58(21):149-155.
[9] YANG E,DENG C,LIU W,et al.Pairwise relationship guided deep hashing for cross-modal retrieval[C]//AAAI Conference on Artificial Intelligence,2017:1618-1625.
[10] DENG C,CHEN Z,LIU X,et al.Triplet-based deep hashing network for cross-modal retrieval[J].IEEE Transactions on Image Processing,2019,27(8):3893-3903.
[11] 吴吉祥,鲁芹,李伟霄.基于多模态注意力机制的跨模态哈希网络[J].计算机工程与应用,2022,58(20):229-239.
WU J X,LU Q,LI W X.Cross-modal hashing network based on multimodal attention mechanism[J].Computer Engineering and Applications,2022,58(20):229-239.
[12] SHEN X,SHEN F,SUN Q,et al.Semi-paired discrete hashing:learning latent hash codes for semi-paired cross-view retrieval[J].IEEE Transactions on Cybernetics,2017,47(12):4275-4288.
[13] LI C,YAN T,LUO X,et al.Supervised robust discrete multimodal hashing for cross-media retrieval[J].IEEE Transactions on Multimedia,2019,21(11):2863-2877.
[14] LI H,ZHANG C,JIA X,et al.Adaptive label correlation based asymmetric discrete hashing for cross-modal retrieval[J].IEEE Transactions on Knowledge and Data Engineering,2021,99:1.
[15] LI X,HU D,NIE F.Deep binary reconstruction for cross-modal hashing[C]//ACM International Conference on Multimedia,2017:1398-1406.
[16] JIANG Q,LI W.Deep cross-modal hashing[C]//IEEE Conference on Computer Vision and Pattern Recognition,2017:3232-3240.
[17] MA D.LIANG J,HE R,et al.Nonlinear discrete cross-modal hashing for visual-textual data[J].IEEE Multimedia,2017,24(2):56-65.
[18] ZHONG F,CHEN Z,MIN G.Deep discrete cross-modal hashing for cross-media retrieval[J].Pattern Recognition,2018,83(1):64-77.
[19] PEREIRA J,COVIELLO E,DOYLE G,et al.On the role of correlation and abstraction in cross-modal multimedia retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,36(3):521-535.
[20] LI K,QI G,YE J,et al.Linear subspace ranking hashing for cross-modal retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,39(9):1825-1838.
[21] SHEN X,SHEN F,LIU L,et al.Multi-view discrete hashing for scalable multimedia search[J].ACM Transactions on Intelligent Systems and Technology,2018,9(5):1-21.
[22] ZHU H,LONG M,WANG J,et al.Deep hashing network for efficient similarity retrieval[C]//AAAI Conference on Artificial Intelligence,2016:2415-2421.
[23] XU L,ZENG X,LI W,et al.IDHashGAN:deep hashing with generative adversarial nets for incomplete data retrieval[J].IEEE Transactions on Multimedia,2022,24:534-545.