[1] 杨立波.跨社交媒体的账户匹配方法研究[D].成都:电子科技大学,2019.
YANG L B.Research on account matching methods across social media[D].Chengdu:University of Electronic Science and Technology of China,2019.
[2] 邢玲,邓凯凯,吴红海,等.复杂网络视角下跨社交网络用户身份识别研究综述[J].电子科技大学学报,2020,49(6):905-917.
XING L,DENG K K,WU H H,et al.A review of research on user identity recognition across social networks from the perspective of complex networks[J].Journal of University of Electronic Science and Technology of China,2020,49(6):905-917.
[3] RIEDERER C,KIM Y,CHAINTREAU A,et al.Linking users across domains with location data:theory and validation[C]//Proceedings of the 25th International Conference on World Wide Web,2016:707-719.
[4] CHEN W,YIN H,WANG W,et al.Effective and efficient user account linkage across location based social networks[C]//2018 IEEE 34th International Conference on Data Engineering(ICDE),2018:1085-1096.
[5] 吴铮,于洪涛,刘树新,等.基于信息熵的跨社交网络用户身份识别方法[J].计算机应用,2017,37(8):2374-2380.
WU Z,YU H T,LIU S X,et al.User identification method across social networks based on information entropy[J].Computer Applications,2017,37(8):2374-2380.
[6] HOU X,YANG J,LIN Z,et al.Matching user accounts based on location verification across social networks[J].Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería,2020,36(1):1-7.
[7] WEI C,WANG W Q,YIN H Z,et al.User account linkage across multiple platforms with location data[J].Journal of Computer Science and Technology,2020,35(4):751-768.
[8] GAO X,JI W,LI Y,et al.User identification with spatio-temporal awareness across social networks[C]//the 27th ACM International Conference on Information and Knowledge Management,2018:1831-1834.
[9] QI M J,WANG Z Y,HE Z,et al.User identification across asynchronous mobility traijectories[J].Sensors,2019,19(9):2102.
[10] HAN X,WANG L,XU L,et al.Social media account linkage using user-generated geo-location data[C]//2016 IEEE Conference on Intelligence and Security Informatics(ISI),2016:157-162.
[11] MA J,QIAO Y,HU G,et al.Social account linking via weighted bipartite graph matching[J].International Journal of Communication Systems,2018,31(6):e3471.
[12] 钱芸芸,杨文忠,姚苗,等.融合主题相似度权重的主题社区发现模型[J].计算机工程与应用,2021,57(5):107-114.
QIAN Y Y,YANG W Z,YAO M,et al.Topic community discovery model incorporating topic similarity weight[J].Computer Engineering and Applications,2021,57(5):107-114.
[13] 陈鸿昶,徐乾,黄瑞阳,等.一种基于用户轨迹的跨社交网络用户身份识别算法[J].电子与信息学报,2018(11):2758-2764.
CHEN H C,XU Q,HUANG R Y,et al.User identification across social networks based on user trajectory[J].Journal of Electronics and Information Technology,2018(11):2758-2764.
[14] 徐乾.跨社交网络用户身份识别算法研究[D].郑州:战略支援部队信息工程大学,2018.
XU Q.Research on user identification algorithm across social networks[D].Zhengzhou:Strategic Support Forces Information Engineering University,2018.
[15] HAN X H,WANG L H,XU S J,et al.Linking social network accounts by modeling user spatiotemporal habits[C]//IEEE International Conference on Intelligence and Security Informatics,2017:19-24.
[16] HENAFF M,BRUNA J,LECUN Y.Deep convolutional networks on graph-structured data[J].arXiv:1506.05163,2015.
[17] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[J].arXiv:1609.02907,2016.
[18] SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE Transactions on Neural Neworks,2008,20(1):61-80.
[19] WANG R,ZHU H,WANG L,et al.User identity linkage across social networks by heterogeneous graph attention network modeling[J].Applied Sciences,2020,10(16):5478.
WU J,CHEN S P,YANG Q,et al.Trajectory-user classification with graph neural network[J].Journal of University of Electronic Science and Technology of China,2021,50(5):734-740.