Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (17): 22-34.DOI: 10.3778/j.issn.1002-8331.2210-0435
• Research Hotspots and Reviews • Previous Articles Next Articles
LU Huimin, XUE Han1, WANG Yilong, WANG Guizeng, SANG Pengcheng
Online:
2023-09-01
Published:
2023-09-01
鲁慧民,薛涵,王奕龙,王贵增,桑鹏程
LU Huimin, XUE Han, WANG Yilong, WANG Guizeng, SANG Pengcheng. Review of Application of Machine Learning in Radiomics Analysis[J]. Computer Engineering and Applications, 2023, 59(17): 22-34.
鲁慧民, 薛涵, 王奕龙, 王贵增, 桑鹏程. 机器学习在影像组学分析中的应用综述[J]. 计算机工程与应用, 2023, 59(17): 22-34.
[1] LAMBIN P,RIOS-VELAZQUEZ E,LEIJENAAR R,et al.Radiomics:extracting more information from medical images using advanced feature analysis[J].European Journal of Cancer,2012,48(4):441-446. [2] 刘士远.加强医学影像数据库建设 推动行业快速发展[J].中华放射学杂志,2022,56(9):931-934. LIU S Y.Attach importance to and strengthen the construction of medical image database to promote the rapid development of medical imaging[J].Chinese Journal of Radiology,2022,56(9):931-934. [3] GILLIES R J,KINAHAN P E,HRICAK H.Radiomics:images are more than pictures,they are data[J].Radiology,2016,278(2):563-577. [4] ATTENBERGER U I,LANGS G.How does radiomics actually work?-review[J].R?Fo,2021,193(6):652-657. [5] CUI Y,YIN F F.Impact of image quality on radiomics applications[J].Physics in Medicine & Biology,2022,67(15):1-22. [6] SHINOHARA R T,OH J,NAIR G,et al.Volumetric analysis from a harmonized multisite brain MRI study of a single subject with multiple sclerosis[J].American Journal of Neuroradiology,2017,38(8):1501-1509. [7] MADABHUSHI A,UDUPA J K.New methods of MR image intensity standardization via generalized scale[J].Medical Physics,2006,33(9):3426-3434. [8] NYL L G,UDUPA J K.On standardizing the MR image intensity scale[J].Magnetic Resonance in Medicine,1999,42(6):1072-1081. [9] ISAKSSON L J,RAIMONDI S,BOTTA F,et al.Effects of MRI image normalization techniques in prostate cancer radiomics[J].Physica Medica,2020,71(1):7-13. [10] HU Z,ZHUANG Q,XIAO Y,et al.MIL normalization- prerequisites for accurate MRI radiomics analysis[J].Computers in Biology and Medicine,2021,133(6):1-12. [11] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Processing of the International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241. [12] LOI S,MORI M,BENEDETTI G,et al.Robustness of CT radiomic features against image discretization and interpolation in characterizing pancreatic neuroendocrine neoplasms[J].Physica Medica,2020,76(3):125-133. [13] PARK S H,LIM H,BAE B K,et al.Robustness of magnetic resonance radiomic features to pixel size resampling and interpolation in patients with cervical cancer[J].Cancer Imaging,2021,21(1):1-11. [14] YANG S,WU N,ZHANG L,et al.Evaluation of the linear interpolation method in correcting the influence of slice thicknesses on radiomic feature values in solid pulmonary nodules:a prospective patient study[J].Annals of Translational Medicine,2021,9(4):279. [15] YANG P,XU L,WAN Y,et al.Deep neural network-based approach to improving radiomics analysis reproducibility in liver cancer:effect on image resampling[J].Physics in Medicine & Biology,2021,66(16):1-10. [16] MEYER M,RONALD J,VERNUCCIO F,et al.Reproducibility of CT radiomic features within the same patient:influence of radiation dose and CT reconstruction settings[J].Radiology,2019,293(3):583-591. [17] FERNANDEZ P M,CERDA A L,SANGUESA N C,et al.MR denoising increases radiomic biomarker precision and reproducibility in oncologic imaging[J].Journal of Digital Imaging,2021,34(5):1134-1145. [18] JAUDET C,WEYTS K,LECHERVY A,et al.The impact of artificial intelligence CNN based denoising on FDG PET radiomics[J].Frontiers in Oncology,2021,11:1-9. [19] CHEN J,WEE L,DEKKER A,et al.Improving reproducibility and performance of radiomics in low-dose CT using cycle GANs[J].Journal of Applied Clinical Medical Physics,2022,23(10):1-17. [20] PAN Y,LIU M,LIAN C,et al.Synthesizing missing pet from MRI with cycle-consistent generative adversarial networks for Alzheimer’s disease diagnosis[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2018:455-463. [21] MCCORMICK M,LIU X,JOMIER J,et al.ITK:enabling reproducible research and open science[J].Frontiers in Neuroinformatics,2014,8(13):1-11. [22] SZCZYPINSKI P M,STRZELECKI M,MATERKA A.Mazda-a software for texture analysis[C]//2007 International Symposium on Information Technology Convergence(ISITC 2007),2007:245-249. [23] SZCZYPINSKI P M,STRZELECKI M,MATERKA A,et al.MaZda—a software package for image texture analysis[J].Computer Methods and Programs in Biomedicine,2009,94(1):66-76. [24] STRZELECKI M,SZCZYPINSKI P,MATERKA A,et al.A software tool for automatic classification and segmentation of 2D/3D medical images[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2013,702(4):137-140. [25] FEDOROV A,BEICHEL R,KALPATHY-CRAMER J,et al.3D Slicer as an image computing platform for the quantitative imaging network[J].Magnetic Resonance Imaging,2012,30(9):1323-1341. [26] 彭璟,罗浩宇,赵淦森,等.深度学习下的医学影像分割算法综述[J].计算机工程与应用,2021,57(3):44-57. PENG J,LUO H Y,ZHAO G S,et al.Survey of medical image segmentation algorithm in deep learning[J].Computer Engineering and Applications,2021,57(3):44-57. [27] HELLER N,ISENSEE F,MAIER-HEIN K H,et al.The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging:results of the KiTS19 challenge[J].Medical Image Analysis,2021,67(1):1-16. [28] PRATONDO A,CHUI C K,ONG S H.Integrating machine learning with region-based active contour models in medical image segmentation[J].Journal of Visual Communication and Image Representation,2017,43(1):1-9. [29] ZHENG Q,LI H,FAN B,et al.Integrating support vector machine and graph cuts for medical image segmentation[J].Journal of Visual Communication and Image Representation,2018,55(3):157-165. [30] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:3431-3440. [31] NIE D,WANG L,GAO Y,et al.STRAINet:spatially varying stochastic residual adversarial networks for MRI pelvic organ segmentation[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(5):1552-1564. [32] SCHLEMPER J,OKTAY O,SCHAAP M,et al.Attention gated networks:learning to leverage salient regions in medical images[J].Medical Image Analysis,2019,53(2):197-207. [33] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [34] HARALICK R M,SHANMUGAM K,DINSTEIN I H.Textural features for image classification[J].IEEE Transactions on Systems,Man,and Cybernetics,1973,SMC-3(6):610-621. [35] NANNI L,LUMINI A,BRAHNAM S.Local binary patterns variants as texture descriptors for medical image analysis[J].Artificial Intelligence in Medicine,2010,49(2):117-125. [36] THIBAULT G,ANGULO J,MEYER F.Advanced statistical matrices for texture characterization:application to cell classification[J].IEEE Transactions on Biomedical Engineering,2013,61(3):630-637. [37] MAYERHOEFER M E,MATERKA A,LANGS G,et al.Introduction to radiomics[J].Journal of Nuclear Medicine,2020,61(4):488-495. [38] JAYENDER J,GOMBOS E,CHIKARMANE S,et al.Statistical learning algorithm for in situ and invasive breast carcinoma segmentation[J].Computerized Medical Imaging and Graphics,2013,37(4):281-292. [39] VAN GRIETHUYSEN J J M,FEDOROV A,PARMAR C,et al.Computational radiomics system to decode the radiographic phenotype[J].Cancer Research,2017,77(21):104-107. [40] NIOCHE C,ORLHAC F,BOUGHDAD S,et al.LIFEx:a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity[J].Cancer Research,2018,78(16):4786-4789. [41] ZHANG L,FRIED D V,FAVE X J,et al.IBEX:an open infrastructure software platform to facilitate collaborative work in radiomics[J].Medical Physics,2015,42(3):1341-1353. [42] YANG M,YAN Y,WANG H.IMAge/enGINE:a freely available software for rapid computation of high-dimensional quantification[J].Quantitative Imaging in Medicine and Surgery,2019,9(2):210-218. [43] WANG Y,SHAO J,WANG P,et al.Deep learning radiomics to predict regional lymph node staging for hilar cholangiocarcinoma[J].Frontiers in Oncology,2021,11(10):1-10. [44] TRINH D L,KIM S H,YANG H J,et al.The efficacy of shape radiomics and deep features for glioblastoma survival prediction by deep learning[J].Electronics,2022,11(7):1-13. [45] XIE X,NIU J,LIU X,et al.A survey on incorporating domain knowledge into deep learning for medical image analysis[J].Medical Image Analysis,2021,69(1):1-25. [46] DASH M,LIU H.Feature selection for classification:a review[J].Intelligent Data Analysis,1997,1(3):131-156. [47] ABDI H,WILLIAMS L J.Principal component analysis[J].Wiley Interdisciplinary Reviews:Computational Statistics,2010,2(4):433-459. [48] DEMIRCIOGLU A.Benchmarking feature selection methods in radiomics[J].Investigative Radiology,2022,57(7):433-443. [49] TIAN Q,YAN L F,ZHANG X,et al.Radiomics strategy for glioma grading using texture features from multiparametric MRI[J].Journal of Magnetic Resonance Imaging,2018,48(6):1518-1528. [50] DE JONG E E C,SANDERS K J C,DEIST T M,et al.Can radiomics help to predict skeletal muscle response to chemotherapy in stage IV non-small cell lung cancer?[J].European Journal of Cancer,2019,120(19):107-113. [51] NASIEF H,ZHENG C,SCHOTT D,et al.A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer[J].NPJ Precision Oncology,2019,3(1):1-10. [52] MA Y,MA W,XU X,et al.How does the delta-radiomics better differentiate pre-invasive GGNs from invasive GGNs?[J].Frontiers in Oncology,2020,10(7):1-7. [53] ZHANG G M,HAN Y Q,WEI J W,et al.Radiomics based on mri as a biomarker to guide therapy by predicting upgrading of prostate cancer from biopsy to radical prostatectomy[J].Journal of Magnetic Resonance Imaging,2020,52(4):1239-1248. [54] WU Q,WANG S,LI L,et al.Radiomics analysis of computed tomography helps predict poor prognostic outcome in COVID-19[J].Theranostics,2020,10(16):7231-7244. [55] HUANG X,SHU J,YAN Y,et al.Feasibility of magnetic resonance imaging-based radiomics features for preoperative prediction of extrahepatic cholangiocarcinoma stage[J].European Journal of Cancer,2021,155(17):227-235. [56] TONG X,FENG X,PENG F,et al.Morphology-based radiomics signature:a novel determinant to identify multiple intracranial aneurysms rupture[J].Aging(Albany NY),2021,13(9):13195-13210. [57] EERTINK J J,VAN DE BRUG T,WIEGERS S E,et al. 18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma[J].European Journal of Nuclear Medicine and Molecular Imaging,2022,49(3):932-942. [58] VAN DER LUBBE M,VAIDYANATHAN A,DE WIT M,et al.A non-invasive,automated diagnosis of Meniere’s disease using radiomics and machine learning on conventional magnetic resonance imaging:a multicentric,case-controlled feasibility study[J].Radiologia Medica,2022,127(1):72-82. [59] LI Z,HOLZGREVE A,UNTERRAINER L M,et al.Combination of pre-treatment dynamic[18F] FET PET radiomics and conventional clinical parameters for the survival stratification in patients with IDH-wildtype glioblastoma[J].European Journal of Nuclear Medicine and Molecular Imaging,2022:1-11. [60] JOLISSAINT J S,WANG T,SOARES K C,et al.Machine learning radiomics can predict early liver recurrence after resection of intrahepatic cholangiocarcinoma[J].HPB(Oxford),2022,24(8):1341-1350. [61] BAO D,ZHAO Y,LI L,et al.A MRI-based radiomics model predicting radiation-induced temporal lobe injury in nasopharyngeal carcinoma[J].European Radiology,2022,32(10):6910-6921. [62] ZARAGORI T,OSTER J,ROCH V,et al.18F-FDOPA PET for the noninvasive prediction of glioma molecular parameters:a radiomics study[J].Journal of Nuclear Medicine,2022,63(1):147-157. [63] WANG T,SHE Y,YANG Y,et al.Radiomics for survival risk stratification of clinical and pathologic stage IA pure-solid non-small cell lung cancer[J].Radiology,2022,302(2):425-434. [64] WU W,LIAO S,LU Z.White blood cells image classification based on radiomics and deep learning[J].IEEE Access,2022,10:124036-124052. [65] TIAN Y,KOMOLAFE T E,ZHENG J,et al.Assessing PD-L1 expression level via preoperative MRI in HCC based on integrating deep learning and Radiomics features[J].Diagnostics,2021,11(10):1-15. [66] LAMBIN P,LEIJENAAR R T H,DEIST T M,et al.Radiomics:the bridge between medical imaging and personalized medicine[J].Nature Reviews Clinical Oncology,2017,14(12):749-762. [67] PONSIGLIONE A,STANZIONE A,CUOCOLO R,et al.Cardiac CT and MRI radiomics:systematic review of the literature and radiomics quality score assessment[J].European Radiology,2022,32(11):2629-2638. [68] ZWANENBURG A,VALLIERES M,ABDALAH M A,et al.The image biomarker standardization initiative:standardized quantitative radiomics for high-throughput image-based phenotyping[J].Radiology,2020,295(2):328-338. [69] CRADDOCK C,BENHAJALI Y,CARLTON C,et al.The neuro bureau preprocessing initiative:open sharing of preprocessed neuroimaging data and derivatives[J].Frontiers in Neuroinformatics,2013,7(8):27. [70] BAID U,GHODASARA S,BILELLO M,et al.The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification[J].arXiv:2107.02314,2021. [71] MENZE B H,JAKAB A,BAUER S,et al.The multimodal brain tumor image segmentation benchmark (BRATS)[J].IEEE Transactions on Medical Imaging,2014,34(10):1993-2024. [72] BAKAS S,AKBARI H,SOTIRAS A,et al.Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features[J].Scientific Data,2017,4(1):1-13. [73] WANG X,PENG Y,LU L,et al.ChestX-Ray8:hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2097-2106. [74] HEATH M,BOWYER K,KOPANS D,et al.The digital database for screening mammography[C]//Proceedings of the Fifth International Workshop on Digital Mammography(IWDM-2000),2020:212-218. [75] HEATH M,BOWYER K,KOPANS D,et al.Current status of the digital database for screening mammography[M]//Digital mammography.Dordrecht:Springer,1998:457-460. [76] ARMATO III S G,MCLENNAN G,BIDAUT L,et al.The lung image database consortium(LIDC) and image database resource initiative(IDRI):a completed reference database of lung nodules on CT scans[J].Medical Physics,2011,38(2):915-931. [77] RAJPURKAR P,IRVIN J,BAGUL A,et al.Mura:large dataset for abnormality detection in musculoskeletal radiographs[J].arXiv:1712.06957,2017. [78] BAKR S,GEVAERT O,ECHEGARAY S,et al.A radiogenomic dataset of non-small cell lung cancer[J].Scientific Data,2018,5(1):1-9. [79] MARCUS D S,WANG T H,PARKER J,et al.Open access series of imaging studies(OASIS):cross-sectional MRI data in young,middle aged,nondemented,and demented older adults[J].Journal of Cognitive Neuroscience,2007,19(9):1498-1507. [80] MARCUS D S,FOTENOS A F,CSERNANSKY J G,et al.Open access series of imaging studies:longitudinal MRI data in nondemented and demented older adults[J].Journal of Cognitive Neuroscience,2010,22(12):2677-2684. [81] LAMONTAGNE P J,BENZINGER T L S,MORRIS J C,et al.OASIS-3:longitudinal neuroimaging,clinical,and cognitive dataset for normal aging and Alzheimer disease[J].medRxiv,2019:1-37. [82] KOENIG L N,DAY G S,SALTER A,et al.Select atrophied regions in Alzheimer disease(SARA):an improved volumetric model for identifying Alzheimer disease dementia[J].NeuroImage:Clinical,2020,26(3):1-33. [83] YANG X,HE X,ZHAO J,et al.COVID-CT-dataset:a CT scan dataset about COVID-19[J].arXiv:2003.13865,2020. [84] BULTEN W,KARTASALO K,CHEN P H C,et al.Artificial intelligence for diagnosis and Gleason grading of prostate cancer:the PANDA challenge[J].Nature Medi-cine,2022,28(1):154-163. |
[1] | CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang. Review of Application of Deep Learning in Symbolic Music Generation [J]. Computer Engineering and Applications, 2023, 59(9): 27-45. |
[2] | JIANG Qiuxiang, GUO Weipeng, WANG Zilong, OUYANG Xingtao, LONG Ruirui. Application and Prospect of Python Language in Field of Hydrology and Water Resources [J]. Computer Engineering and Applications, 2023, 59(9): 46-58. |
[3] | LUO Huilan, CHEN Han. Spatial-Temporal Convolutional Attention Network for Action Recognition [J]. Computer Engineering and Applications, 2023, 59(9): 150-158. |
[4] | LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang. Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation [J]. Computer Engineering and Applications, 2023, 59(8): 1-12. |
[5] | HE Jiafeng, CHEN Hongwei, LUO Dehan. Review of Real-Time Semantic Segmentation Algorithms for Deep Learning [J]. Computer Engineering and Applications, 2023, 59(8): 13-27. |
[6] | ZHANG Yanqing, MA Jianhong, HAN Ying, CAO Yangjie, LI Jie, YANG Cong. Review of Research on Real-World Single Image Super-Resolution Reconstruction [J]. Computer Engineering and Applications, 2023, 59(8): 28-40. |
[7] | ZHANG Xu, YANG Xuezhi, LIU Xuenan, FANG Shuai. Non-Contact Atrial Fibrillation Detection Based on Video Pulse Features [J]. Computer Engineering and Applications, 2023, 59(8): 331-340. |
[8] | DAI Chao, LIU Ping, SHI Juncai, REN Hongjie. Regularized Extraction of Remotely Sensed Image Buildings Using U-Shaped Networks [J]. Computer Engineering and Applications, 2023, 59(8): 105-116. |
[9] | WANG Jing, JIN Yuchu, GUO Ping, HU Shaoyi. Survey of Camera Pose Estimation Methods Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 1-14. |
[10] | JIANG Yuying, CHEN Xinyu, LI Guangming, WANG Fei, GE Hongyi. Graph Neural Network and Its Research Progress in Field of Image Processing [J]. Computer Engineering and Applications, 2023, 59(7): 15-30. |
[11] | ZHOU Yurong, ZHANG Qiaoling, YU Guangzeng, XU Weiqiang. Review of Acoustic Signal-Based Industrial Equipment Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(7): 51-63. |
[12] | WEI Jian, ZHAO Xu, LI Lianpeng. Siamese Network Weak Target Tracking Algorithm Fused with Location Information Attention [J]. Computer Engineering and Applications, 2023, 59(7): 198-206. |
[13] | ZHAO Hongwei, ZHENG Jiajun, ZHAO Xinxin, WANG Shengchun, LI Yidong. Rail Surface Defect Method Based on Bimodal-Modal Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 285-293. |
[14] | GAO Teng, ZHANG Xianwu, LI Bai. Review on Application of Deep Learning in Helmet Wearing Detection [J]. Computer Engineering and Applications, 2023, 59(6): 13-29. |
[15] | JIANG Xinlu, CHEN Tian’en, WANG Cong, LI Shuqin, ZHANG Hongming, ZHAO Chunjiang. Survey of Deep Learning Algorithms for Agricultural Pest Detection [J]. Computer Engineering and Applications, 2023, 59(6): 30-44. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 330
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 514
|
|
|||||||||||||||||||||||||||||||||||||||||||||