Improved DeepLabv3+ Model for Surface Defect Detection on Steel Plates
FAN Yaoyao, WANG Xingfen, LIU Yahui
1.Computer School, Beijing Information Science and Technology University, Beijing 100101, China
2.School of Information Management, Beijing Information Science and Technology University, Beijing 100192, China
FAN Yaoyao, WANG Xingfen, LIU Yahui. Improved DeepLabv3+ Model for Surface Defect Detection on Steel Plates[J]. Computer Engineering and Applications, 2023, 59(16): 150-158.
[1] 寇旭鹏,刘帅君,麻之润.基于Faster-RCNN的钢带缺陷检测方法[J].中国冶金,2021,31(4):77-83.
KOU X P,LIU S J,MA Z R.Defect detection method of steel strip based on Faster-RCNN[J].China Metallurgy,2021,31(4):77-83.
[2] 李少波,杨静,王铮,等.缺陷检测技术的发展与应用研究综述[J].自动化学报,2020,46(11):2319-2336.
LI S B,YANG J,WANG Z,et al.Review of development and application of defect detection technology[J].Acta Automatica Sinica,2020,46(11):2319-2336.
[3] BORSELLI A,COLLA V,VANNUCCI M,et al.A fuzzy inference system applied to defect detection in flat steel production[C]//2010 IEEE International Conference on Fuzzy Systems,2010:1-6.
[4] CHU M,LIU X,GONG R,et al.Multi-class classification method using twin support vector machines with multi-information for steel surface defects[J].Chemometrics and Intelligent Laboratory Systems,2018,176:108-118.
[5] 徐镪,朱洪锦,范洪辉,等.改进的YOLOv3网络在钢板表面缺陷检测研究[J].计算机工程与应用,2020,56(16):265-272.
XU Q,ZHU H J,FAN H H,et al.Study on detection of steel plate surface defects by improved YOLOv3 network[J].Computer Engineering and Applications,2020,56(16):265-272.
[6] KIM M S,PARK T,PARK P G.Classification of steel surface defect using convolutional neural network with few images[C]//2019 12th Asian Control Conference,2019:1398-1401.
[7] 张广世,葛广英,朱荣华,等.基于改进YOLOv3网络的齿轮缺陷检测[J].激光与光电子学进展,2020,57(12):153-161.
ZHANG G S,GE G Y,ZHU R H,et al.Gear defect detection based on the improved YOLOv3 Network[J].Laser & Optoelectronics Progress,2020,57(12):153-161.
[8] 田萱,王亮,丁琪.基于深度学习的图像语义分割方法综述[J].软件学报,2019,30(2):440-468.
TIAN X,WANG L,DING Q.Review of image semantic segmentation based on deep learning[J].Journal of Software,2019,30(2):440-468.
[9] 程万胜.钢板表面缺陷检测技术的研究[D].哈尔滨:哈尔滨工业大学,2008.
CHENG W S.Study on detection technology for steel strip surface defects[D].Harbin:Harbin Institute of Technology,2008.
[10] XU K,XU Y,ZHOU P,et al.Application of RNAMlet to surface defect identification of steels[J].Optics and Lasers in Engineering,2018,105:110-117.
[11] 邓勇,黄远伟,赖治屹.钢板缺陷识别的Volterra-SVM模型研究[J].机械科学与技术,2023,42(1):132-138.
DENG Y,HUANG Y W,LAI Z Y.Study on Volterra-SVM model or defect recognition of steel plate[J].Mechanical Science and Technology for Aerospace Engineering,2023,42(1):132-138.
[12] HASNI H,ALAVI A H,JIAO P,et al.Detection of fatigue cracking in steel bridge girders:a support vector machine approach[J].Archives of Civil and Mechanical Engineering,2017,17(3):609-622.
[13] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Image-
Net classification with deep convolutional neural networks[J].Association for Computing Machinery,2017,60(6):84-90.
[14] 陶显,侯伟,徐德.基于深度学习的表面缺陷检测方法综述[J].自动化学报,2021,47(5):1017-1034.
TAO X,HOU W,XU D.A survey of surface defect detection methods based on deep learning[J].Acta Automatica Sinica,2021,47(5):1017-1034.
[15] WANG S,XIA X,YE L,et al.Automatic detection and classification of steel surface defect using deep convolutional neural networks[J].Metals,2021,11(3):388.
[16] 李钧正,殷子玉,乐心怡.基于小样本学习的钢板表面缺陷检测技术[J].航空科学技术,2021,32(6):65-70.
LI J Z,YIN Z Y,LE X Y.Surface defect detection for steel plate with small dataset[J].Aeronautical Science & Technology,2021,32(6):65-70.
[17] HUANG Z,WU J,XIE F.Automatic surface defect segmentation for hot-rolled steel strip using depth-wise separable U-shape network[J].Materials Letters,2021,301:130271.
[18] 徐辉,祝玉华,甄彤,等.深度神经网络图像语义分割方法综述[J].计算机科学与探索,2021,15(1):47-59.
XU H,ZHU Y H,ZHEN T,et al.Survey of image semantic segmentation methods based on deep neural network[J].Journal of Frontiers of Computer Science and Technology,2021,15(1):47-59.
[19] 张鑫,姚庆安,赵健,等.全卷积神经网络图像语义分割方法综述[J].计算机工程与应用,2022,58(8):45-57.
ZHANG X,YAO Q A,ZHAO J,et al.Image semantic segmentation based on fully convolutional neural network[J].Computer Engineering and Applications,2022,58(8):45-57.
[20] LI H,X P,FAN H,et al.DFANet:deep feature aggregation for real-time semantic segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:9522-9531.
[21] LI Y,ZHANG J,CHENG Y,et al.Semantics-guided multi-level RGB-D feature fusion for indoor semantic segmentation[C]//Proceedings of the 2017 IEEE International Conference on Image Processing,2017:1262-1266.
[22] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition,2015:3431-3440.
[23] RONNEBERGER O,FISCHER P,BROX T.U-net:Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241.
[24] BADRINARAYANAN V,KENDALL A,CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.
[25] CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision,2018:801-818.
[26] ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:2881-2890.
[27] KIM B,CHO S.Image-based concrete crack assessment using mask and region-based convolutional neural network[J].Structural Control and Health Monitoring,2019,26(8):1545-2255.
[28] 高广尚.深度学习推荐模型中的注意力机制研究综述[J].计算机工程与应用,2022,58(9):9-18.
GAO G S.Survey on attention mechanismsin deep learning recommendation models[J].Computer Engineering and Applications,2022,58(9):9-18.
[29] ZHAO H,ZHANG Y,LIU S,et al.PSANet:point-wise spatial attention network for scene parsing[C]//Proceedings of the 15th European Conference on Computer Vision,2018:267-283.
[30] FU J,LIU J,TIAN H,et al.Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:3146-3154.
[31] NIU R,SUN X,TIAN Y,et al.Hybrid multiple attention network for semantic segmentation in aerial images[J].IEEE Transactions on Geoscience and Remote Sensing,2021,60:1-18.
[32] HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:13713-13722.
[33] YADAV G,MAHESHWARI S,AGARWAL A.Contrast limited adaptive histogram equalization based enhancement for real time video system[C]//Proceedings of the 2014 International Conference on Advances in Computing,Communications and Informatics,2014:2392-2397.