[1] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587.
[2] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1440-1448.
[3] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems,2015:1137-1149.
[4] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788.
[5] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision,2016:21-37.
[6] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2980-2988.
[7] HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017.
[8] HAN K,WANG Y,TIAN Q,et al.Ghostnet:more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:1580-1589.
[9] ZHANG X,ZHOU X,LIN M,et al.Shufflenet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:6848-6856.
[10] 张利红,蔡敬菊.基于轻量化Yolov5算法的目标检测系统[J].计算机技术与发展,2022,32(11):134-139.
ZHANG L H,CAI J J.Target detection system based on lightweight Yolov5 algorithm[J].Computer Technology and Development,2022,32(11):134-139.
[11] 黄磊,杨媛,杨成煜,等.FS-YOLOv5:轻量化红外目标检测方法[J].计算机工程与应用,2023,59(9):215-224.
HUANG L,YANG Y,YANG C Y,et al.FS-YOLOv5:lightweight infrared rode target detection method[J].Computer Engineering and Applications,2023,59(9):215-224.
[12] 郭宇阳,胡伟超,戴帅,等.面向路侧交通监控场景的轻量车辆检测模型[J].计算机工程与应用,2022,58(6):192-199.
GUO Y Y,HU W C,DAI S,et al.Ligh weight vehicle detection model for roadside traffic monitoring scenarios[J].Computer Engineering and Applications,2022,58(6):192-199.
[13] 徐正军,张强,许亮.一种基于改进YOLOv5s-Ghost网络的交通标志识别方法[J].光电子·激光,2023,34(1):52-61.
XU Z J,ZHANG Q,XU L.A traffic sign recognition method based on improved YOLOv5s-Ghost network[J].Journal of Optoelectronics·Laser,2023(1):52-61.
[14] HUANG Y,ZHOU Y,LAN J,et al.Ghost feature network for super-resolution[C]//2020 Cross Strait Radio Science & Wireless Technology Conference(CSRSWTC),2020:1-3.
[15] 薄景文,张春堂.基于YOLOv3的轻量化口罩佩戴检测算法[J].电子测量技术,2021,44(23):105-110.
BO J W,ZHANG C T.Lightweight mask wearing detection algorithm based on YOLOv3[J].Electronic Measurement Technology,2021,44(23):105-110.
[16] MA N,ZHANG X,ZHENG H T,et al.Shufflenet v2:practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:116-131.
[17] 王新彦,易政洋.基于改进YOLOv5的割草机器人工作环境障碍物检测方法研究[J].中国农机化学报,2023,44(3):171-176.
WANG X Y,YI Z Y.Research on obstacle detection method of mowing robot working environment based on improved YOLOv5[J].Journal of Chinese Agricultural Mecha-
nization,2023,44(3):171-176.
[18] 李成跃,姚剑敏,林志贤,等.基于改进YOLO轻量化网络的目标检测方法[J].激光与光电子学进展,2020,57(14):45-53.
LI C Y,YAO J M,LIN Z X,et al.Object detection method based on improved YOLO lightweight network[J].Laser & Optoelectronics Progress,2022,57(14):45-53.
[19] LI H,LI J,WEI H,et al.Slim-neck by GSConv:a better design paradigm of detector architectures for autonomous vehicles[J].arXiv:2206.02424,2022.
[20] MISRA D.Mish:a self regularized non-monotonic neural activation function[J].arXiv:1908.08681,2019.
[21] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J].arXiv:2207.02696,2022.
[22] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[23] GE Z,LIU S,WANG F,et al.Yolox:exceeding yolo series in 2021[J].arXiv:2107.08430,2021.
[24] 邱天衡,王玲,王鹏.基于改进YOLOv5的目标检测算法研究[J].计算机工程与应用,2022,58(13):63-73.
QIU T H,WANG L,WANG P.Research on object detection algorithm based on improved YOLOv5[J].Computer Engineering and Application,2022,58(13):63-73.