ZOU Peng, YANG Kaijun, LIANG Chen. Improved YOLOv5 Algorithm for Real-Time Detection of Irregular Driving Behavior[J]. Computer Engineering and Applications, 2023, 59(13): 186-193.
[1] 贺宜,杨鑫炜,吴兵,等.中美交通事故数据统计方法比较研究[J].交通信息与安全,2018,36(1):19-27.
HE Y,YANG X W,W B,et al.A comparison of statistical survey metheds of traffic accident data between China and the Uuited States[J].Journal of Transport Information and Safety,2018,36(1):19-27.
[2] 李光东,程进,周子肖,等.基于深度学习的不规范驾驶行为智能识别系统[J].传感器世界,2020,26(2):7-11.
LI G D,CHENG J,ZHOU Z X,et al.Irregular driving behavior intelligent recognition system based on deep learning[J].Sensor World,2020,26(2):7-11.
[3] 张志威.基于机器视觉的异常驾驶行为检测方法研究[D].长沙:湖南大学,2020.
ZHANG Z W.Research on abnormal driving behavior detection method based on machine vision[D].Changsha:Hunan University,2020.
[4] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the International Conference on Learning Representations,2015:1-14.
[5] YAN S Y,TENG Y X,JEREMY S,et al.Driver behavior recognition based on deep convolutional neural networks[C]//Proceedings of the 12th International Conference on Natural Computation,Fuzzy Systems and Knowledge Discovery,2016:636-641.
[6] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587.
[7] 田文洪,曾柯铭,莫中勤,等.基于卷积神经网络的驾驶员不安全行为识别[J].电子科技大学学报,2019,48(3):381-387.
TIAN W H,ZENG K M,MO Z Q,et al.Recognition of unsafe driving behaviors based on convolutional neural network[J].Journal of University of Electronic Science and Technology of China,2019,48(3):381-387.
[8] 王丹.基于机器视觉的驾驶员打电话行为检测[D].北京:北京理工大学,2015.
WANG D.Driver phone call behavior detection based on machine vision[D].Beijing:Beijing Institute of Technology,2015.
[9] LE T H N,ZHENG Y T,ZHU C C,et al.Multiple scale faster-renn approach to driver’s cell-phone usage and hands on steering wheel detection[C]//Proceedings of the Computer Vision and Pattern Recognition Workshops,2016:46-53.
[10] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards realtime object detection with region proposal networks[C]//Proceedings of International Conference on Neural Information Processing Systems,2015:91-99.
[11] SESHADRI K,JUEFEIXU F,PAL D K,et al.Driver cell phone usage detection on strategic highway research program(SHRP2)face view videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2015:35-43.
[12] OHN-BAR E,MARTIN S,TAWARI A,et al.Head,eye,and hand pattems for driver activity recognition[C]//Proceedings of the Intemational Conference on Pattern Recognition,2014.
[13] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:6517-6525.
[14] REDMON J,FARHADI A.YOL09000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017.
[15] REDMON J,FARHADI A.YOLOv3:an incremental improvement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018.
[16] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2020.
[17] 殷远齐,徐源,邢远新.基于YOLO v4的车辆目标检测算法[J].计算机与现代化,2022(7):8-14.
YIN Y Q,XU Y,XING Y X.Vehicle target detection algorithm based on YOLO v4[J].Computer and Modernization,2022(7):8-14.
[18] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[J].arXiv:1807.06521,2018.
[19] 王新宇.基于YOLOv5目标检测算法的交通信号灯智能控制装置设计[J].公路交通技术,2022,38(1):142-148.
WANG X Y.Design of intelligent control device of traffic signal light based on YOLOv5 object detection algorithm[J].Technology of Highway and Transport,2002,38(1):142-148.
[20] 邓天民,谭思奇,蒲龙忠.基于改进YOLOv5s的交通信号灯识别方法[J].计算机工程,2022,48(9):55-62.
DENG T M,TAN S Q,PU L Z.Traffic signal recognition method based on improved YOLOv5s[J].Computer Engineering,2022,48(9):55-62.
[21] 牛洪超,胡晓兵,罗耀俊.基于M-YOLO的自动驾驶下目标识别算法[J].计算机工程与设计,2022,43(8):2213-2220.
NIU H C,HU X B,LUO Y J.Target recognition algorithm in autonomous driving based on M-YOLO[J].Computer Engineering and Design,2022,43(8):2213-2220.
[22] 田坤,李冠,赵卫东.基于YOLO和极限学习机的驾驶员安全带检测模型研究[J].计算机应用与软件,2019,36(11):196-201.
TIAN K,LI G,ZHAO W D.Driver’s seatbelt detection based on YOLO and extreme learning machine[J].Computer Applications and Software,2019,36(11):196-201.
[23] 汤科元,刘川莉,蔡乐才,等.基于YOLO轻量化网络的交通标志检测算法[J].四川轻化工大学学报(自然科学版),2021,34(5):62-70.
TANG K Y,LIU C L,CAI L C,et al.Traffic sign detection algorithm based on YOLO lightweight network[J].Journal of Sichuan University of Science & Engineering(Natural Science Edition),2021,34(5):62-70.
[24] HAN K,WANG Y,TIAN Q,et al.GhostNet:more features from cheap operations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2020:1577-1586.
[25] ZHANG H B,XIONG Q P,JIANG Z L,et al.Joint SENet heterogeneous layer feature fusion and integrated learning for material image recognition[J].Control and Decision,2021(6).
[26] 朱张莉,饶元,吴渊,等.注意力机制在深度学习中的研究进展[J].中文信息学报,2019,33(6):11.
ZHU Z L,RAO Y,WU Y,et al.Research progress of attention mechanism in deep learning[J].Journal of Chinese Information Processing,2019,33(6):11.
[27] YANG X L,JIANG W X,YUAN H R.Traffic sign recognition detection based on YOLOv5[J].Information Technology and Informatization,2021(4):28-30.
[28] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[29] LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:8759-8768.
[30] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125.
[31] ZHENG Z H,WANG P,LIU W,et al.Distance-IoU loss:faster and better learning for bounding box regression[C]//Proceedings of AAAI Conference on Artificial Intelligence,2020:12993-13000.