Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (13): 1-16.DOI: 10.3778/j.issn.1002-8331.2210-0037
• Research Hotspots and Reviews • Previous Articles Next Articles
SHI Chaojun, LI Xingkuan, ZHANG Ke, HAN Leile, YANG Shifang
Online:
2023-07-01
Published:
2023-07-01
石超君,李星宽,张珂,韩磊乐,杨世芳
SHI Chaojun, LI Xingkuan, ZHANG Ke, HAN Leile, YANG Shifang. Research Progress of Ground Cloud Image Segmentation Method[J]. Computer Engineering and Applications, 2023, 59(13): 1-16.
石超君, 李星宽, 张珂, 韩磊乐, 杨世芳. 地基云图分割方法研究进展[J]. 计算机工程与应用, 2023, 59(13): 1-16.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2210-0037
[1] ZHANG J L,LIU P,ZHANG F,SONG Q Q.CloudNet:ground‐based cloud classification with deep convolutional neural network[J].Geophysical Research Letters,2018,45(16):8665-8672. [2] STEPHENS G L.Cloud feedbacks in the climate system:a critical review[J].Journal of Climate,2005,18(2):237-273. [3] SCHNEIDER S H,WASHINGTON W M,CHERVIN R M.Cloudiness as a climatic feedback mechanism:effects on cloud amounts of prescribed global and regional surface temperature changes in the NCAR GCM[J].Journal of the Atmospheric Sciences,1978,35(12):2207-2221. [4] DUDA D P,MINNIS P,KHLOPENKOV K,et al.Estimation of 2006 Northern Hemisphere contrail coverage using MODIS data[J].Geophysical Research Letters,2013,40(3):612-617. [5] 卢静,翟海青,刘纯,等.光伏发电功率预测统计方法研究[J].华东电力,2010,38(4):563-567. LU J,ZHAI H Q,LIU C,et al.Study on statistical method for predicting photo voltaic generation power[J].East China Electric Power,2010,38(4):563-567. [6] 龚莺飞,鲁宗相,乔颖,等.光伏功率预测技术[J].电力系统自动化,2016,40(4):140-151. GONG Y F,LU Z X,QIAO Y,et al.An overview of photovoltaic energy system output forecasting technology[J].Automation of Electric Power Systems,2016,40(4):140-151. [7] VARELA A M,BERTOLIN C,MUNOZ B C,et al.Astronomical site selection:on the use of satellite data for aerosol content monitoring[J].Monthly Notices of the Royal Astronomical Society,2008,391(2):507-520. [8] ZHENG X,YE J,CHEN Y,et al.Detecting comma-shaped clouds for severe weather forecasting using shape and motion[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(6):3788-3801. [9] GLOTFELTY T,ALAPATY K,HE J,et al.The weather research and forecasting model with aerosol cloud interactions(WRF-ACI):development,evaluation,and initial application[J].Monthly Weather Review,2019,147(5):1491-1511. [10] STEFANUT S,OLLERER K,MANOLE A,et al.National environmental quality assessment and monitoring of atmospheric heavy metal pollution—a moss bag approach[J].Journal of Environmental Management,2019,248:109224. [11] MSCA C,PED B,AMB B,et al.Multiproxy analysis of a lateglacial-holocene sedimentary section in the fuegian steppe(northern tierra del fuego,argentina):implications for coastal landscape evolution in relation to climatic variability and sea-level fluctuations-ScienceDirect[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2020,557:109941. [12] FLUKE C J,JACOBS C.Surveying the reach and maturity of machine learning and artificial intelligence in astronomy[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2020,10(2):e1349. [13] KIM N,NA S I,PARK C W,et al.An artificial intelligence approach to prediction of corn yields under extreme weather conditions using satellite and meteorological data[J].Applied Sciences,2020,10(11):3785. [14] CHEN Y,YANG Y,LIU C,et al.A hybrid application algorithm based on the support vector machine and artificial intelligence:an example of electric load forecasting[J].Applied Mathematical Modelling,2015,39(9):2617-2632. [15] SWANN J A,SILVERMANN G M,LINDEMANN E A,et al.Artificial intelligence facilitates performance review and characterization of prehospital emergency medical services treatment[J].Journal of the American College of Surgeons,2020,231(4):305-306. [16] VNA C,HG B,IKU B.Artificial intelligence based ensemble model for prediction of vehicular traffic noise[J].Environmental Research,2020,180:108852. [17] MDF A,FP B.Assessing bank efficiency and performance with operational research and artificial intelligence techniques:a survey[J].European Journal of Operational Research,2010,204(2):189-198. [18] MATEO-GARCíA G,LAPARRA V,DAN L P,et al.Transferring deep learning models for cloud detection between Landsat-8 and Proba-V[J].ISPRS Journal of Photogrammetry and Remote Sensing,2020,160(4):1-17. [19] LU J,WANG Y,ZHU Y,et al.P_SegNet and NP_SegNet:new neural network architectures for cloud recognition of remote sensing images[J].IEEE Access,2019,7(1):87323-87333. [20] 陆雅君,陈刚毅,龚克坚,等.测云方法研究进展[J].气象科技,2012,40(5):689-697. LU Y J,CHEN G Y,GONG K J,et al.Research progress of cloud measurement method[J].Meteorological Science and Technology,2012,40(5):689-697. [21] SCHIFFER R A,ROSSOW W B.ISCCP global radiance data set:a new resource tor climate research[J].Bulletin of the American Meteorological Society,1985,66(12):1498-1505. [22] 高太长,刘磊,赵世军,等.全天空测云技术现状及进展[J].应用气象学报,2010,21(1):101-109. GAO T C,LIU L,ZHAO S J,et al.The actuality and progress of whole sky cloud sounding techniques[J].Journal of Applied Meteorological Science,2010,21(1):101-109. [23] LONG C N,SABBURG J M,CALBO J,et al.Retrieving cloud characteristics from ground-based daytime color all-sky images[J].Journal of Atmospheric and Oceanic Technology,2006,23(5):633-652. [24] LIU L Y,LV B L,XU J Y,et al.Automatic observation experiments of cloud amounts and cloud forms based on the image recognition[C]//Proceedings of 2019 International Conference on Meteorology Observations(ICMO),2019:1-4. [25] AN N W,KAICUN.A comparison of MODIS-derived cloud fraction with surface observations at five SURFRAD sites[J].Journal of Applied Meteorology and Climatology,2015,54(5):1009-1020. [26] CALBO J,SABBURG J.Feature extraction from whole-sky ground-based images for cloud-type recognition[J].Journal of Atmospheric and Oceanic Technology,2008,25(1):3-14. [27] PFISTER G,MCKENZIE R L,LILEY J B,et al.Cloud coverage based on all-sky imaging and its impact on surface solar irradiance[J].Journal of Applied Meteorology,2003,42(10):1421-1434 [28] 吕达仁,霍娟,吕曜.地基全天空成像仪遥感的科学,技术问题和初步试验[M]//中国遥感——奋进创新20年.北京:气象出版社,2001:114-120. LYU D R,HUO J,LYU Y.Science,technical problems and preliminary experiment of ground-based all-sky imager remote sensing[M]//China remote sensing-20 years of innovation.Beijing:Meteorological Press,2001:114-120. [29] 霍娟,吕达仁,王越.全天空云识别阈值法的数值模拟初步研究[J].自然科学进展,2006,16(4):480-484. HUO J,LYU D R,WANG Y.Preliminary study on numerical simulation of threshold method for all-sky cloud recognition[J].Advances in Natural Science,2006,16(4):480-484. [30] HEINLE A,MACKE A,SRIVASTAV A.Automatic cloud classification of whole sky images[J].Atmospheric Measurement Techniques,2010,3(3):557-567. [31] NETO S L M,WANGENHEIM R V,PERIERA E B,et al. The use of euclidean geometric distance on rgb color space for the classification of sky and cloud patterns[J].Journal of Atmospheric and Oceanic Technology,2010,27(9):1504-1517. [32] OTSU N.A thresholding selection method from gray-level histogram[J].IEEE SMC,1978,8:62-66. [33] 杨俊,吕伟涛,马颖,等.基于自适应阈值的地基云自动检测方法[J].应用气象学报,2009,20(6):713-721. YANG J,LU W T,MA Y,et al.An automatic ground-based cloud detection method based on adaptive threshold[J].Journal of Applied Meteorological Science,2009,20(6):713-721. [34] 杨俊,吕伟涛,马颖,等.基于局部阈值插值的地基云自动检测方法[J].气象学报,2010(6):1007-1017. YANG J,LU W T,MA Y,et al.An automatic ground-based cloud detection method based on the local threshold interpolation[J].Acta Meteorologica Sinica,2010(6):1007-1017. [35] LI Q,LU W,YANG J.A hybrid thresholding algorithm for cloud detection on ground-based color images[J].Journal of Atmospheric and Oceanic Technology,2011,28(10),1286-1296. [36] SHI C,WANG Y,WANG C,et al.Ground-based cloud detection using graph model built upon superpixels[J].IEEE Geoscience & Remote Sensing Letters,2017,14(5):719-723. [37] ACHANTA R,SHAJI A,SMITH K,et al.SLIC superpixels compared to state-of-the-art superpixel methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282. [38] CSURKA G,DANCE C,FAN L,et al.Visual categorization with bags of keypoints[C]//Workshop on Statistical Learning in Computer Vision,2004:1-2. [39] RIGATTI S J.Random forest[J].Journal of Insurance Medicine,2017,47(1):31-39. [40] DEV S,LEE Y H,WINKLER S.Color-based segmentation of sky/cloud images from ground-based cameras[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,10(1):231-242. [41] MAS J F,FLORES J J.The application of artificial neural networks to the analysis of remotely sensed data[J].International Journal of Remote Sensing,2008,29(3):617-663. [42] MOUNTRAKIS G,IM J,OGOLE C.Support vector machines in remote sensing:a review[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(3):247-259. [43] TARAVAT A,DEL F F,CORNARO C,et al.Neural networks and support vector machine algorithms for automatic cloud classification of whole-sky ground-based images[J].IEEE Geoscience and Remote Sensing Letters,2014,12(3):666-670. [44] BLAZEK M,PATA P.Colour transformations and K-means segmentation for automatic cloud detection[J].Meteorologische Zeitschrift,2015,24(5):503-509. [45] KRAUZ L,JANOUT P,BLA?EK M,et al.Assessing cloud segmentation in the chromacity diagram of all-sky images[J].Remote Sensing,2020,12(11):1902. [46] RUDRAPPA G,VIJAPUR A.Cloud classification using K-means clustering and content based image retrieval technique[C]//Proceedings of 2020 International Conference on Communication and Signal Processing(ICCSP),2020. [47] YE L,CAO Z G,XIAO Y,et al.Supervised fine-grained cloud detection and recognition in whole-sky images[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(10):7972-7985. [48] CHEN E,WU X,WANG C.Application of improved convolutional neural network in image classification[C]//Proceedings of 2019 International Conference on Machine Learning,Big Data and Business Intelligence(MLBDBI),2019:109-113. [49] LONG J,SHELHSMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:3431-3440. [50] 毋立芳,贺娇瑜,简萌,等.局部聚类分析的FCN-CNN云图分割方法[J].软件学报,2018,29(4):1049-1059. WU L F,HE J Y,JIAN M,et al.Local clustering analysis based FCN-CNN for cloud image segmentation[J].Journal of Software,2018,29(4):1049-1059. [51] SHI C J,ZHOU Y T,QIU B,et al.Diurnal and nocturnal cloud segmentation of all-sky imager(ASI) images using enhancement fully convolutional networks[J].Atmospheric Measurement Techniques,2019,12(9):4713-4724. [52] RONNEBERGER O,FISCHER P,VROX T,et al.U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention,2015:234-241. [53] DEV S,MANANDHR S,LEE Y H.Multi-label cloud segmentation using a deep network[C]//Proceedings of 2019 USNC-URSI Radio Science Meeting(Joint with AP-S Symposium),2019:113-114. [54] SHI C J,ZHOU Y T,QIU B,et al.CloudU-Net:a deep convolutional neural network architecture for daytime and nighttime cloud images’ segmentation[J].IEEE Geoscience and Remote Sensing Letters,2020,18(10):1688-1692. [55] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848. [56] ZHANG M,LUCAS J,BA J,et al.Lookahead optimizer:k steps forward,1 step back[C]//Advances in Neural Information Processing Systems,2019:1-12. [57] SHI C J,ZHOU Y T,QIU B.CloudU-Netv2:a cloud segmentation method for ground-based cloud images based on deep learning[J].Neural Processing Letters,2021,53(4):2715-2728. [58] FU J,LIU J,TIAN H,et al.Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:3146-3154. [59] SHI C J,ZHOU Y T,QIU B.CloudRaedNet:residual attention-based encoder-decoder network for ground-based cloud images segmentation in nychthemeron[J].International Journal of Remote Sensing,2022,43(6):2059-2075. [60] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [61] BADRINARAYANAN V,KENDALL A,CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [62] DEV S,NAUTIYAL A,LEE Y H,et al.CloudSegNet:a deep network for nychthemeron cloud image segmentation[J].IEEE Geoscience and Remote Sensing Letters,2019,16(12):1814-1818. [63] LIN M,CHEN Q,YAN S.Network in network[J].arXiv:1312.4400,2013. [64] XIE W,LIU D,YANG M,et al.SegCloud:a novel cloud image segmentation model using a deep convolutional neural network for ground-based all-sky-view camera observation[J].Atmospheric Measurement Techniques,2020,13(4):1953-1961. [65] LOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of International Conference on Machine Learning,2015:448-456. [66] 张雪,贾克斌,刘钧,等.面向轻量化的地基云图分割技术研究[J].测控技术,2022(9):264-270. ZHANG X,JIA K B,LIU J,et al.Segmentation technology of ground-based cloud image for lightweight[J].Measurement and Control Technology,2022(9):264-270. [67] ZHANG Z,YANG S,LIU S,et al.Ground-based cloud detection using multiscale attention convolutional neural network[J].IEEE Geoscience and Remote Sensing Letters,2021,19:1-5. [68] YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[J].arXiv:1511.07122,2015. [69] ZHOU Z,ZHANG F,XIAO H.A novel ground-based cloud image segmentation method by using deep transfer learning[J].IEEE Geoscience and Remote Sensing Letters,2021,19:1-5. [70] DIANNE G,WILIEM A,LOVELL B C.Deep-learning from mistakes:automating cloud class refinement for sky image segmentation[C]//Proceedings of 2019 Digital Image Computing:Techniques and Applications(DICTA),2019:1-8. [71] LIU S,ZHANG J,ZHANG Z.TransCloudSeg:ground-based cloud image segmentation with transformer[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:6121-6132. [72] FABEL Y,NOURI B,WILBERT S,et al.Applying self-supervised learning for semantic cloud segmentation of all-sky images[J].Atmospheric Measurement Techniques Discussions,2022,15(3):797-809. [73] DEV S,SAVOY F M,LEE Y H,et al.Nighttime sky/cloud image segmentation[C]//Proceedings of 2017 IEEE International Conference on Image Processing(ICIP),2017:345-349. [74] DEV S,SAVOY F M,LEE Y H,et al.WAHRSIS:a low-cost high-resolution whole sky imager with near-infrared capabilities[J].arXiv:1605.06595,2016. [75] ZHANG Z,WANG S,LIU S,et al.Ground-based remote sensing cloud detection using dual pyramid network and encoder decoder constraint[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-10. [76] CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:801-818. |
[1] | CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang. Review of Application of Deep Learning in Symbolic Music Generation [J]. Computer Engineering and Applications, 2023, 59(9): 27-45. |
[2] | JIANG Qiuxiang, GUO Weipeng, WANG Zilong, OUYANG Xingtao, LONG Ruirui. Application and Prospect of Python Language in Field of Hydrology and Water Resources [J]. Computer Engineering and Applications, 2023, 59(9): 46-58. |
[3] | LUO Huilan, CHEN Han. Spatial-Temporal Convolutional Attention Network for Action Recognition [J]. Computer Engineering and Applications, 2023, 59(9): 150-158. |
[4] | ZHANG Xu, YANG Xuezhi, LIU Xuenan, FANG Shuai. Non-Contact Atrial Fibrillation Detection Based on Video Pulse Features [J]. Computer Engineering and Applications, 2023, 59(8): 331-340. |
[5] | DAI Chao, LIU Ping, SHI Juncai, REN Hongjie. Regularized Extraction of Remotely Sensed Image Buildings Using U-Shaped Networks [J]. Computer Engineering and Applications, 2023, 59(8): 105-116. |
[6] | LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang. Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation [J]. Computer Engineering and Applications, 2023, 59(8): 1-12. |
[7] | HE Jiafeng, CHEN Hongwei, LUO Dehan. Review of Real-Time Semantic Segmentation Algorithms for Deep Learning [J]. Computer Engineering and Applications, 2023, 59(8): 13-27. |
[8] | ZHANG Yanqing, MA Jianhong, HAN Ying, CAO Yangjie, LI Jie, YANG Cong. Review of Research on Real-World Single Image Super-Resolution Reconstruction [J]. Computer Engineering and Applications, 2023, 59(8): 28-40. |
[9] | WEI Jian, ZHAO Xu, LI Lianpeng. Siamese Network Weak Target Tracking Algorithm Fused with Location Information Attention [J]. Computer Engineering and Applications, 2023, 59(7): 198-206. |
[10] | ZHAO Hongwei, ZHENG Jiajun, ZHAO Xinxin, WANG Shengchun, LI Yidong. Rail Surface Defect Method Based on Bimodal-Modal Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 285-293. |
[11] | WANG Jing, JIN Yuchu, GUO Ping, HU Shaoyi. Survey of Camera Pose Estimation Methods Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 1-14. |
[12] | JIANG Yuying, CHEN Xinyu, LI Guangming, WANG Fei, GE Hongyi. Graph Neural Network and Its Research Progress in Field of Image Processing [J]. Computer Engineering and Applications, 2023, 59(7): 15-30. |
[13] | ZHOU Yurong, ZHANG Qiaoling, YU Guangzeng, XU Weiqiang. Review of Acoustic Signal-Based Industrial Equipment Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(7): 51-63. |
[14] | LYU Xiaoling, YANG Shengyue, ZHANG Minglu, LIANG Ming, WANG Junchao. Improved Fisheye Image Target Detection Algorithm Based on YOLOv5 Network [J]. Computer Engineering and Applications, 2023, 59(6): 241-250. |
[15] | PENG Pei, ZHANG Meiling, ZHENG Dong. Side Channel Attack Fused with CNN_LSTM [J]. Computer Engineering and Applications, 2023, 59(6): 268-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||