LI Daoquan, LI Teng, LI Yuxiu. Research on Network Traffic Classification Based on Adaptive Feature Selection and KNN[J]. Computer Engineering and Applications, 2023, 59(12): 270-277.
[1] MUBARAK M,MCGLOHON N,MUSLEH M,et al.Evaluating quality of service traffic classes on the megafly network[C]//International Conference on High Performance Computing.Cham:Springer,2019:3-20.
[2] AHMAD Z,SHAHID KHAN A,WAI SHAING C,et al.Network intrusion detection system:a systematic study of machine learning and deep learning approaches[J].Transactions on Emerging Telecommunications Technologies,2021,32(1):e4150.
[3] YUSOF A R,UDZIR N I,SELAMAT A,et al.Adaptive feature selection for denial of services(DoS) attack[C]//2017 IEEE Conference on Application,Information and Network Security(AINS),2017:81-84.
[4] 王灵矫,吕琮霞,郭华.SDN环境下基于支持向量机的DDoS攻击检测研究[J].云南大学学报(自然科学版),2021,43(1):52-59.
WANG L J,LV Z X,GUO H.Research on DDoS attack detection based on support vector machine in SDN environment[J].Journal of Yunnan University(Natural Sciences Edition),2021,43(1):52-59.
[5] 池亚平,莫崇维,杨垠坦,等.面向软件定义网络架构的入侵检测模型设计与实现[J].计算机应用,2020,40(1):116-122.
CHI Y P,MO C W,YANG Y T,et al.Design and implementation of intrusion detection model for software-defined network architecture[J].Computer Applications,2020,40(1):116-122.
[6] DA SILVA A S,WICKBOLDT J A,GRANVILLE L Z,et al.ATLANTIC:a framework for anomaly traffic detection,classification,and mitigation in SDN[C]//2016 IEEE/IFIP Network Operations and Management Symposium,2016:27-35.
[7] ALMSEIDIN M,ALZUBI M,KOVACS S,et al.Evaluation of machine learning algorithms for intrusion detection system[C]//2017 IEEE 15th International Symposium on Intelligent Systems and Informatics(SISY),2017:277-282.
[8] HOODA M,BABU J,VAMSI P S,et al.An improved intrusion detection system based on KDD dataset using feature ranking and data sampling[C]//2020 International Conference on Communication and Signal Processing(ICCSP),2020:1128-1132.
[9] OSANAIYE O,CAI H,CHOO K K R,et al.Ensemble-based multi-filter feature selection method for DDoS detection in cloud computing[J].EURASIP Journal on Wireless Communications and Networking,2016(1):1-10.
[10] BOLON-CANEDO V,ALONSO-BETANZOS A.Ensembles for feature selection:a review and future trends[J].Information Fusion,2019,52:1-12.
[11] SHAFIQ M,YU X,BASHIR A K,et al.A machine learning approach for feature selection traffic classification using security analysis[J].The Journal of Supercomputing,2018,74(10):4867-4892.
[12] TAVALLAEE M,BAGHERI E,LU W,et al.A detailed analysis of the KDD CUP 99 data set[C]//2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications,2009:1-6.
[13] RESENDE P A A,DRUMMOND A C.The hogzilla dataset[EB/OL].(2018).https://ids-hogzilla.org/dataset/.
[14] SHEN M,LIU Y,ZHU L,et al.Optimizing feature selection for efficient encrypted traffic classification:a systematic approach[J].IEEE Network,2020,34(4):20-27.
[15] SHAFIQ M,YU X,LAGHARI A A,et al.Network traffic classification techniques and comparative analysis using machine learning algorithms[C]//2016 2nd IEEE International Conference on Computer and Communications(ICCC),2016:2451-2455.