Computer Engineering and Applications ›› 2020, Vol. 56 ›› Issue (21): 248-252.DOI: 10.3778/j.issn.1002-8331.1908-0255

Previous Articles     Next Articles

Real-Time Express Pick-Up Scheduling Method Based on GIS Technology and Weighted kNN Algorithm

YING Yi, REN Kai, LIU Yajun   

  1. 1.College of Computer Science and Technology, Sanjiang University, Nanjing 210012, China
    2.Jinling College, Nanjing University, Nanjing 210089, China
    3.School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
  • Online:2020-11-01 Published:2020-11-03

基于GIS技术和加权kNN算法的实时揽件调度方法

应毅,任凯,刘亚军   

  1. 1.三江学院 计算机科学与工程学院,南京 210012
    2.南京大学 金陵学院,南京 210089
    3.东南大学 计算机科学与工程学院,南京 210096

Abstract:

In the end delivery service of logistics, the research on real-time express pick-up scheduling is still in blank. Based on GIS technology, Web technology and mobile development technology, an intelligent logistics information system for “last kilometer” distribution is constructed. In the framework of this system, weighted kNN classification algorithm is improved to make real-time express pick-up scheduling for delivery man in reality. Through the application of distribution activities on rookie post station(a website to provide end delivery service), the intelligent logistics information system mentioned above can effectively improve the service quality of the logistics network. Meanwhile, the real-time express pick-up scheduling algorithm proposed in this paper has a significant effect on solving practical problems.

Key words: intelligent logistics information system, real-time express pick-up scheduling, ArcGIS, weighted kNN algorithm

摘要:

在物流末端的配送服务中,实时揽件调度研究尚处于空白。基于GIS技术、Web技术和移动开发技术,构建了针对“最后一公里”配送的智能物流信息系统。在此系统框架内,改进加权kNN分类算法实现快递人员的实时揽件调度。通过在菜鸟驿站某网点配送活动中的应用,表明智能物流信息系统能有效提升物流网点的服务质量,实时揽件调度方法也对解决实际问题效果显著。

关键词: 智能物流信息系统, 实时揽件调度, ArcGIS, 加权kNN算法