Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (11): 222-230.DOI: 10.3778/j.issn.1002-8331.2203-0110

• Graphics and Image Processing • Previous Articles     Next Articles

Colorectal Polyp Segmentation Combining Pyramid Vision Transformer and Axial Attention

ZHOU Xue, BAI Zhengyao, LU Qianjie, FAN Shenglan   

  1. School of Information Science and Engineering, Yunnan University, Kunming 650500, China
  • Online:2023-06-01 Published:2023-06-01

融合视觉Transformer和轴向注意的结直肠息肉分割

周雪,柏正尧,陆倩杰,樊圣澜   

  1. 云南大学 信息学院,昆明 650500

Abstract: To address the challenges of automatic and accurate segmentation of colorectal polyps, a colorectal segmentation network is proposed:PVTA-Net. The network consists of PVTv2, feature pyramid network(FPN), spatial pyramid(ASPP), multi-headed self-attentive mechanism(MHSA), and parallel axial attention module(PAA-d):extracting feature maps at different scales by PVTv2; using FPN different levels of features are fused to obtain the enhanced feature maps; ASPP is used to aggregate the feature maps obtained by FPN; MHSA is used to obtain the perceptual field containing all input images; and PAA-d is used to generate features with global relationships. Five datasets, including ColonDB, are used to test the comparison between PVTA-Net and mainstream polyp segmentation networks, and the results show that PVTA-Net outperforms the existing mainstream baseline networks. To verify the generalization performance of PVTA-Net, it is used for COVID-19 lung CT image segmentation, and the results show that, PVTA-Net outperforms the mainstream baseline network.

Key words: colorectal polyp segment, COVID-19, PVTv2, axial attention, feature pyramid network

摘要: 针对结直肠息肉自动准确分割存在的挑战,提出了一种结直肠分割网络PVTA-Net。该网络由PVTv2、特征金字塔网络(FPN)、空间金字塔(ASPP)、多头自注意机制(MHSA)以及并行轴向注意模块(PAA-d)组成:通过PVTv2提取不同尺度的特征图;利用FPN不同层次特征进行融合,得到增强的特征图;利用ASPP聚合由FPN得到的特征图;通过MHSA获得包含所有输入图像的感受野;利用PAA-d生成具有全局关系的特征。采用ColonDB等5个数据集对PVTA-Net和主流息肉分割网络进行对比测试,结果表明,PVTA-Net优于现有主流基线网络。为了验证PVTA-Net的泛化性能,将其用于COVID-19肺部CT图像分割,结果表明,PVTA-Net优于主流基线网络。

关键词: 结直肠分割, COVID-19, PVTv2, 轴向注意, 特征金字塔网络