Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (1): 26-36.DOI: 10.3778/j.issn.1002-8331.2208-0102
• Research Hotspots and Reviews • Previous Articles Next Articles
DING Guohui, ZHANG Qi, FANG Shichao, LI Qing, SUN Xiaoyu, ZHANG Luxia, KONG Guilan
Online:
2023-01-01
Published:
2023-01-01
丁国辉,张琦,房士超,李青,孙小宇,张路霞,孔桂兰
DING Guohui, ZHANG Qi, FANG Shichao, LI Qing, SUN Xiaoyu, ZHANG Luxia, KONG Guilan. Review of Multi-Modal Retrieval in Medicine[J]. Computer Engineering and Applications, 2023, 59(1): 26-36.
丁国辉, 张琦, 房士超, 李青, 孙小宇, 张路霞, 孔桂兰. 多模态检索在医学领域的研究综述[J]. 计算机工程与应用, 2023, 59(1): 26-36.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2208-0102
[1] 杜鹏飞,李小勇,高雅丽.多模态视觉语言表征学习研究综述[J].软件学报,2021,32(2):327-348. DU P F,LI X Y,GAO Y L.Survey on multimodal visual language representation learning[J].Journal of Software,2021,32(2):327-348. [2] MüLLER H,UNAY D.Retrieval from and understanding of large-scale multi-modal medical datasets:A review[J].IEEE Transactions on Multimedia,2017,19(9):2093-2104. [3] 吴飞,朱文武,于俊清.多媒体技术研究:2014——深度学习与媒体计算[J].中国图象图形学报,2015,20(11):1423-1433. WU F,ZHU W W,YU J Q.Researches on multimedia technology 2014—deep learning and multimedia computing[J].Journal of Image and Graphics,2015,20(11):1423-1433. [4] 姚伟娜.基于深度哈希算法的图像—文本跨模态检索研究[D].北京:北京交通大学,2018. YAO W N.Research on image-text cross-modal retrieval based on deep hash algorithm[D].Beijing:Beijing Jiaotong University,2018. [5] ANAYI Y,KOGAN I,GELBART E,et al.A comparative study for chest radiograph image retrieval using binary texture and deep learning classification[C]//Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2015:2940-2943. [6] SMEULDERS A W M,WORRING M,SANTINI S,et al.Content-based image retrieval at the end of the early years[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(12):1349-1380. [7] CLOUGH P,SANDERSON M.The CLEF 2003 cross language image retrieval track[C]//Proceedings of the Workshop of the Cross-Language Evaluation Forum for European Languages,2003:581-593. [8] CLOUGH P,SANDERSON M,MULLER H.The CLEF cross language image retrieval track(ImageCLEF) 2004[C]//Proceedings of the International Conference on Image and Video Retrieval,2004:243-251. [9] WEI C H,LI Y,LI C T.Effective extraction of Gabor features for adaptive mammogram retrieval[C]//Proceedings of the IEEE International Conference on Multimedia and Expo,2007:1503-1506. [10] GREENSPAN H,PINHAS A T.Medical image categorization and retrieval for PACS using the GMM-KL framework[J].IEEE Transactions on Information Technology in Biomedicine,2007,11(2):190-202. [11] DEMNER-FUSHMAN D.Annotation and retrieval of clinically relevant images[J].international Journal of Medical Informatics,2009,78(12):59-67. [12] AYED A B,KARDOUCHI M,SELOUNI S A.Rotation invariant fuzzy shape contexts based on eigenshapes and fourier transforms for efficient radiological image retrieval[C]//Proceedings of the International Conference on Multimedia Computing and Systems,2012:266-271. [13] CAMLICA Z,TIZHOOSH H R,KHALVATI F.Medical image classification via SVM using LBP features from saliency-based folded data[C]//Proceedings of the IEEE 14th International Conference on Machine Learning and Applications(ICMLA),2015:128-132. [14] CAMLICA Z,TIZHOOSH H R,KHALVATI F.Autoencoding the retrieval relevance of medical images[C]//Proceedings of the International Conference on Image Processing Theory,Tools and Applications(IPTA),2015:550-555. [15] HEARST M A,DIVOLI A,GUTURU H,et al.BioText search engine:Beyond abstract search[J].Bioinformatics,2007,23(16):2196-2197. [16] KAHN C E.Multilingual retrieval of radiology images[J].Radiographics,2009,29(1):23-29. [17] XU S H,MCCUSKER J,KRAUTHAMMER M.Yale Image Finder(YIF):A new search engine for retrieving biomedical images[J].Bioinformatics,2008,24(17):1968-1970. [18] STATHOPOULOS S,LOURENTZOU I,KVRIAKOPOULOU A,et al.IPL at CLEF 2013 medical retrieval task[C]//Proceedings of CLEF(Working Notes),2013. [19] KALPATHY-CRAMER J.Effectiveness of global features for automatic medical image classification and retrieval—the experiences of OHSU at ImageCLEF med[J].Pattern Recognition Letters,2008,29(15):2032-2038. [20] ZHOU X,STERN R,MULLER H.Case-based fracture image retrieval[J].International Journal of Computer Assisted Radiology and Surgery,2012,7(3):401-411. [21] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. [22] LIU S,LIU S,PUJOL S,et al.Propagation graph fusion for multi-modal medical content-based retrieval[C]//Proceedings of the 13th International Conference on Control Automation Robotics & Vision,2014:849-854. [23] KUMAR A,KIM J,FENG D,et al.Graph-based retrieval of multi-modality medical images:A comparison of representations using simulated images[C]//Proceedings of the 25th IEEE International Symposium on Computer-Based Medical Systems,2012:1-6. [24] KITANOVSKI I,STREZOSKI G,DIMITROVSKI I,et al.Multimodal medical image retrieval system[J].Multimedia Tools and Applications,2017,76(2):2955-2978. [25] DENG J,DONG W,SOCHER R,et al.ImageNet:A large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2009:248-255. [26] KALCHBRENNER N,BLUNSOM P.Recurrent continuous translation models[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,2013:1700-1709. [27] SUTSKEVER I,VINVALS O,LE Q V.Sequence to sequence learning with neural networks[C]//Advances in Neural Information Processing Systems,2014. [28] GEHRING J,AULI M,GRANGIER D,et al.Convolutional sequence to sequence learning[C]//Proceedings of the International Conference on Machine Learning,2017:1243-1252. [29] VINVALS O,TOSHEY A,BENGIO S,et al.Show and tell:A neural image caption generator[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:3156-3164. [30] YAN F,MIKOLAJCZYK K.Deep correlation for matching images and text[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:3441-3450. [31] FENG F X,WANG X J,LI R F,et al.Correspondence autoencoders for cross-modal retrieval[J].ACM Transactions on Multimedia Computing,Communications,and Applications,2015,12(S1):1-22. [32] ANDREW G,ARORA R,BILMES J A,et al.Deep canonical correlation analysis[C]//Proceedings of the 30th International Conference on International Conference on Machine Learning,2013:1247-1255. [33] WANG W,YANG X Y,OOI B C,et al.Effective deep learning-based multi-modal retrieval[J].The VLDB Journal,2016,25(1):79-101. [34] JANOWCZYL A,MADABHUSHI A.Deep learning for digital pathology image analysis:A comprehensive tutorial with selected use cases[J].Journal of Pathology Informatics,2016,7(1):29. [35] SHI Y,CHEN S,YOU X,et al.Deep supervised information bottleneck Hashing for cross-modal retrieval based computer-aided diagnosis[J].arXiv:2205.08365,2022. [36] MBILINYI A,SCHULDT H.Cross-modality medical image retrieval with deep features[C]//Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine(BIBM),2020:2632-2639. [37] ROSSI A,HOSSEINZADEH M,BIANCHINI M,et al.Multi-modal Siamese network for diagnostically similar lesion retrieval in prostate MRI[J].IEEE Transactions on Medical Imaging,2021,40(3):986-995. [38] CHUNG Y A,WENG W H.Learning deep representations of medical images using siamese CNNs with application to content-based image retrieval[J].arXiv:1711.08490,2017. [39] ZAGORUYKO S,KOMODAKIS N.Learning to compare image patches via convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:4353-4361. [40] CHOPRA S,HADSELL R,LECUN Y.Learning a similarity metric discriminatively,with application to face verification[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005:539-546. [41] HADSELL R,CHPPRA S,LECUN Y.Dimensionality reduction by learning an invariant mapping[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2006:1735-1742. [42] KUMAR S,UDUPA R.Learning Hash functions for cross-view similarity search[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence,2011. [43] DING G,GUO Y,ZHOU J.Collective matrix factorization hashing for multimodal data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:2075-2082. [44] LIN Z J,DING G G,HAN J G,et al.Cross-view retrieval via probability-based semantics-preserving hashing[J].IEEE Transactions on Cybernetics,2017,47(12):4342-4355. [45] ZHOU J L,DING G G,GUO Y C.Latent semantic sparse hashing for cross-modal similarity search[C]//Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval,2014:415-424. [46] ZHANG D,LI W J.Large-scale supervised multimodal hashing with semantic correlation maximization[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2014. [47] 欧卫华,刘彬,周永辉,等.跨模态检索研究综述[J].贵州师范大学学报(自然科学版),2018,36(2):114-120. OU W H,LIU B,ZHOU Y H,et al.A survey on the cross-modal retrieval research[J].Journal of Guizhou Normal University(Natural Sciences),2018,36(2):114-120. [48] WANG W,OOI B C,YANG X,et al.Effective multi-modal retrieval based on stacked auto-encoders[J].Proceedings of the VLDB Endowment,2014,7(8):649-660. [49] CAO Y,LONG M,WANG J,et al.Correlation autoencoder hashing for supervised cross-modal search[C]//Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval,2016:197-204. [50] JIANG Q Y,LI W J.Deep cross-modal hashing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3232-3240. [51] YANG E K,LIU M X,YAO D R,et al.Deep Bayesian hashing with center prior for multi-modal neuroimage retrieval[J].IEEE Transactions on Medical Imaging,2021,40(2):503-513. [52] ZHANG Y,OU W H,SHI Y F,et al.Deep medical cross-modal attention hashing[J].World Wide Web,2022,25(4):1519-1536. [53] 赵晓乐.面向胸部CT图像—文本的跨模态哈希检索技术研究[D].昆明:昆明理工大学,2019. ZHAO X L.Research on cross-modal hash retrieval technology for chest CT image-text[D].Kunming:Kunming University of Science and Technology,2019. [54] YU X,YU S,PRINCIPE J C.Deep deterministic information bottleneck with matrix-based entropy functional[C]//Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing,2021:3160-3164. [55] XU L M,ZENG X H,ZHENG B C,et al.Multi-manifold deep discriminative cross-modal hashing for medical image retrieval[J].IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society,2022,31:3371-3385. [56] MARTíN-VALDIVIA M T.Using information gain to improve multi-modal information retrieval systems[J].Information Processing & Management,2008,44(3):1146-1158. [57] VIKRAM M,ANANTHARAMAN A,BS S,et al.An approach for multimodal medical image retrieval using latent dirichlet allocation[C]//Proceedings of the ACM India Joint International Conference on Data Science and Management of Data,2019:44-51. [58] CAO Y,STEFFEY S,HE J B,et al.Medical image retrieval:a multimodal approach[J].Cancer Informatics,2015,13:125-136. [59] 杨柳青,王冲.基于多特征融合的异质信息搜索推荐算法研究[J].计算机工程与应用,2022,58(13):171-176. YANG L Q,WANG C.Research on heterogeneous information search recommendation algorithm based on multifeature fusion[J].Computer Engineering and Applications,2022,58(13):171-176. [60] JOHNSON A,POLLARD T,MARK R,et al.Mimic-CXR database[J].PhysioNet10,2019,13026:C2JT1Q. [61] JOHNSON A E W,POLLARD T J,BERKOWITZ S J,et al.MIMIC-CXR,a de?identified publicly available database of chest radiographs with free-text reports[J].Scientific Data,2019,6:1-8. [62] JOHNSON A,LUNGREN M,PENG Y,et al.MIMIC-CXR-JPG-chest radiographs with structured labels[J/OL].PhysioNet(2019)[2022-07-01].https://doi.org/10.13026/8360-t248. [63] WANG X,PENG Y,LU L,et al.Chestx-ray8:Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2097-2106. [64] 孙钦佩.肺结节CT图像病理特性智能分析与基于图像特征的信息检索关键技术研究[D].北京:中国科学院大学(中国科学院上海技术物理研究所),2017. SUN Q P.Intelligent analysis of pathological characteristics of pulmonary nodules CT images and key techniques of information retrieval based on image feature[D].Beijing:University of Chinese Academy of Sciences(Shanghai Institute of Technical Physics,Chinese Academy of Sciences),2017. [65] ELGER B S.Strategies for health data exchange for secondary,cross-institutional clinical research[J].Computer Methods and Programs in Biomedicine,2010,99(3):230-251. [66] HUGHES J,HUNTER D,SHEEHAN M,et al.European textbook on ethics in research[M].[S.l.]:Publications Office of European Union,2010. [67] UNAV D,EKIN A,HU F.Medical image search and retrieval for improved tele?healthcare[M]//Telehealthcare computing and engineering.Boca Raton,FL,USA:CRC Press,2013:660-679. |
[1] | XIANG Hongxin1, YANG Yun1,2. Survey on Imbalanced Data Mining Methods [J]. Computer Engineering and Applications, 2019, 55(4): 1-16. |
[2] | SONG Yueling, LI Xiaowu. Performance Evaluation Method of Single Reader Movement RFID System [J]. Computer Engineering and Applications, 2019, 55(23): 228-234. |
[3] | XIA Yusheng, LIU Kai, ZHANG Hao, JIN Feiyu, ZHENG Linjiang. Multilateral-Confined Method for Indoor Localization:Algorithm Design and System Implementation [J]. Computer Engineering and Applications, 2019, 55(11): 250-256. |
[4] | JI Lei1, GUO Shurong2, CONG Xuhui3, LIU Caixia1. Performance evaluation of PPP project based on OWA operator and cloud matter-element model—taking profit-making PPP project as research object [J]. Computer Engineering and Applications, 2018, 54(16): 220-226. |
[5] | FEI Yunqiao1, LIU Wenping1, LUO Youqing2, LU Pengfei2. Comparison of algorithms for unmanned aerial vehicle image segmentation in monitoring forest diseases and insect pests [J]. Computer Engineering and Applications, 2017, 53(8): 216-223. |
[6] | WANG Hao1,2, LIU Xiujuan1,2, QI Jianyu1,2. Dynamic angle precision real-time evaluation technique for strap-down INS [J]. Computer Engineering and Applications, 2017, 53(13): 266-270. |
[7] | WANG Jingfeng. C-POWGA operator and its application to uncertain multiple attribute decision making [J]. Computer Engineering and Applications, 2015, 51(9): 57-61. |
[8] | CHENG Geping1, LING Hefei2. Anti-collusion fingerprinting scheme based on perceptual model [J]. Computer Engineering and Applications, 2015, 51(9): 107-110. |
[9] | XIAO Huadong, SUN Jing, WEI Min, LI Juan, SHEN Yu. Relative sustained performance metric model for high performance computing system [J]. Computer Engineering and Applications, 2015, 51(5): 33-37. |
[10] | CHEN Lei1, CAI Ming2, SHI Kun2. RTOS kernel performance evaluation technology research based on loads of task and interrupt [J]. Computer Engineering and Applications, 2014, 50(17): 80-85. |
[11] | LIU Tingting1, YANG Wei1, WANG Yuzhu2. Performance evaluation of P2P video streaming in wireless mesh networks [J]. Computer Engineering and Applications, 2013, 49(16): 71-76. |
[12] | MENG Zhiyong1,2, WANG Qingsong1, HUANG Haifeng1, YU Anxi1. InSAR system simulation performance evaluation based on stamp points [J]. Computer Engineering and Applications, 2012, 48(6): 119-122. |
[13] | ZHANG Meng1, CHEN Ken1, LI Na2, HUI Ming1. Optimization of tracking mode between Kalman Filter and Particle Filter [J]. Computer Engineering and Applications, 2012, 48(36): 129-133. |
[14] | WANG Weiting1, XIAO Jinsheng2, XIE Honggang2. Novel model for IEEE80.11 DCF performance analysis on unsaturated traffic [J]. Computer Engineering and Applications, 2012, 48(3): 99-101. |
[15] | WU Zhichuan, PENG Guohua. Performance evaluation based on grey clustering of segmentation [J]. Computer Engineering and Applications, 2012, 48(19): 197-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||