Improved Small Target Detection Method of Bearing Defects in YOLOX Network
LI Yadong, MA Xing, MU Chunyang, LI Jiandong
1.School of Electrical and Information Engineering, North Minzu University, Yinchuan 750021, China
2.The Key Laboratory of Intelligent Information and Big Data Processing of Ningxia Province, North Minzu University, Yinchuan 750021, China
3.College of Mechatronic Engineering, North Minzu University, Yinchuan 750021, China
LI Yadong, MA Xing, MU Chunyang, LI Jiandong. Improved Small Target Detection Method of Bearing Defects in YOLOX Network[J]. Computer Engineering and Applications, 2023, 59(1): 100-107.
[1] 陈金贵,陈昊,张奔.基于改进Niblack算法的轴承滚子表面缺陷检测[J].组合机床与自动化加工技术,2018(12):82-85.
CHEN J G,CHEN H,ZHANG B.Research on surface defect detection of bearing roller based on improved niblack algorithm[J].Modular Machine Tool & Automatic Manufacturing Technique,2018(12):82-85.
[2] 魏利胜,丁坤,段志达,等.融合单应性约束SIFT特征匹配的轴承滚子检测[J].电子测量与仪器学报,2019,33(9):107-113.
WEI L S,DING K,DUAN Z D,et al.Bearing roller detection based on SIFT feature matching with homography constraints[J].Journal of Electronic Measurement and Instrument,2019,33(9):107-113.
[3] 陈硕,林志敏,吴岳彬,等.轴承套圈端面缺陷在线视觉检测的研究与实现[J].轴承,2022(2):48-54.
CHEN S,LIN Z M,WU Y B,et al.Research and implementation of on-line visual inspection of defects on end face of bearing rings[J].Bearing,2022(2):48-54.
[4] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[5] 徐镪,朱洪锦,范洪辉,等.改进的YOLOv3网络在钢板表面缺陷检测研究[J].计算机工程与应用,2020,56(16):265-272.
XU Q,ZHU H J,FAN H H,et al.Study on detection of steel plate surface defects by improved YOLOv3 network[J].Computer Engineering and Applications,2020,56(16):265-272.
[6] REDMON J,FARHADI A.YOLOv3:An incremental improvement[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR),2018:1-4.
[7] 程婧怡,段先华,朱伟.改进YOLOv3的金属表面缺陷检测研究[J].计算机工程与应用,2021,57(19):252-258.
CHENG J Y,DUAN X H,ZHU W.Research on metal surface defect detection by improved YOLOv3[J].Computer Engineering and Applications,2021,57(19):252-258.
[8] 王紫玉,张果,杨奇,等.基于YOLOv4的铜带表面缺陷识别研究[J].光电子激光,2022,33(2):163-170.
WANG Z Y,ZHANG G,YANG Q,et al.Research on surface defect recognition of copper strip based on YOLOv4[J].Journal of Optoelectronics·Laser,2022,33(2):163-170.
[9] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:Optimal speed and accuracy of object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2020.
[10] 石振华,陈杰.改进YOlOv3算法在工件缺陷检测中的应用[J].机械设计与制造,2021(4):62-65.
SHI Z H,CHEN J.Research on the detection of workpiece surface defects based on YOLOv3[J].Machinery Design & Manufacture,2021(4):62-65.
[11] GE Z,LIU S,WANG F,et al.YOLOX:Exceeding YOLO series in 2021[J].arXiv:2107.08430,2021.
[12] WANG C Y,MARK LIAO H Y,WU Y H,et al.CSPNet:A new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2020:1571-1580.
[13] GAO S H,CHENG M M,ZHAO K,et al.Res2Net:A new multi-scale backbone architecture[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(2):652-662.
[14] LI Y H,YAO T,PAN Y W,et al.Contextual transformer networks for visual recognition[J].arXiv:2107.12292,2021.
[15] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[16] WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module[C]//Proceedings of the 2018 European Conference on Computer Vision,2018:3-19.
[17] LIU S,QI L,QIN H F,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:8759-8768.
[18] TAN M,PANG R,LE Q V.EfficientDet:Scalable and efficient object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2020:10778-10787.
[19] HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:13713-13722.
[20] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2818-2826.
[21] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327.