Decimal-Binary Conversion and Clonal Evolution Oriented Improved Imperialist Competitive Algorithm
LI Bin, HUANG Qibin
1.School of Mechanical & Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China
2.School of Transportation, Fujian University of Technology, Fuzhou 350118, China
[1] KAVEH A,BAKHSHPOORI T.Water evaporation optimization:a novel physically inspired optimization algorithm[J].Computers & Structures,2016,167:69-85.
[2] HOLLAND J H.Adaptation in natural and artificial systems:an introductory analysis with applications to biology,control,and artificial intelligence[M].[S.l.]:MIT Press,1992:211.
[3] BEYER H G,SCHWEFEL H P.Evolution strategies-a comprehensive introduction[J].Natural Computing,2002,1(1):3-52.
[4] WEI Z L,HUANG C Q,WANG X F,et al.Nuclear reaction optimization:a novel and powerful physics-based algorithm for global optimization[J].IEEE Access,2019,7:66084-66109.
[5] TAHANI M,BABAYAN N.Flow regime algorithm(FRA):a physics-based meta-heuristics algorithm[J].Knowledge and Information Systems,2019,60(2):1001-1038.
[6] DORIGO M,MANIEZZO V,COLORNI A.Ant system:optimization by a colony of cooperating agents[J].IEEE Trans Syst Man Cybernet,Part B:Cybernet,1996,26(1):29-41.
[7] KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks,1995:1942-1948.
[8] 周蓉,李俊,王浩.基于灰狼优化的反向学习粒子群算法[J].计算机工程与应用,2020,56(7):48-56.
ZHOU R,LI J,WANG H.Reverse learning particle swarm optimization based on grey wolf optimization[J].Computer Engineering and Applications,2020,56(7):48-56.
[9] 张德惠,游晓明,刘升.融合猫群算法的动态分组蚁群算法[J].计算机科学与探索,2020,14(5):880-891.
ZHANG D H,YOU X M,LIU S.Dynamic grouping ant colony algorithm combined with cat swarm optimization[J].Journal of Frontiers of Computer Science and Technology,2020,14(5):880-891.
[10] ATASHPAZ-GARGARI E,LUCAS C.Imperialist competitive algorithm:an algorithm for optimization inspired by imperialistic competition[C]//Proceedings of the 2007 IEEE Congress on Evolutionary Computation.Piscataway:IEEE,2007:4661-4667.
[11] KAVEH A,RAHMANI P,ESLAMLOU A D.An efficient hybrid approach based on Harris Hawks optimization and imperialist competitive algorithm for structural optimization[J].Engineering with Computers,2021:1-29.
[12] PIRHADI S,MAGHOOLI K,MOTEGHAED N Y,et al.Biomarker discovery by imperialist competitive algorithm in mass spectrometry data for ovarian cancer prediction[J].Journal of Medical Signals and Sensors,2021,11(2):108-119.
[13] 彭政,崔雪,王恒,等.考虑储能和需求侧响应的微网光伏消纳能力研究[J].电力系统保护与控制,2017,45(22):63-69.
PENG Z,CUI X,WANG H,et al.Research on the accommodation of photovoltaic power considering storage system and demand response in microgrid[J].Power System Protection and Control,2017,45(22):63-69.
[14] TAO X R,LI J Q,HAN Y Y,et al.Discrete imperialist competitive algorithm for the resource-constrained hybrid flowshop problem[J].Journal of Industrial and Production Engineering,2020,37(7):345-359.
[15] FATHY A,REZK H.Parameter estimation of photovoltaic system using imperialist competitive algorithm[J].Renewable Energy,2017,111:307-320.
[16] 裴小兵,于秀燕,王尚磊.混合帝国竞争算法求解旅行商问题[J].浙江大学学报(工学版),2019,53(10):2003-2012.
PEI X B,YU X Y,WANG S L.Solution of traveling salesman problem by hybrid imperialist competitive algorithm[J].Journal of Zhejiang University(Engineering Science),2019,53(10):2003-2012.
[17] BAHRAMI H,FAEZ K,ABDECHIRI M.Imperialist competitive algorithm using chaos theory for optimization(CICA)[C]//Proceedings of the 12th International Conference on Computer Modelling and Simulation.Piscataway:IEEE,2010:98-103.
[18] ARDEH M A,MENHAJ M B,ESMAILIAN E,et al.EXPLICA:an explorative imperialist competitive algorithm based on the notion of explorers with an expansive retention policy[J].Applied Soft Computing,2017,54:74-92.
[19] KORHAN G,?CLAL G,KADIR T.ICA-RD:the regional domination policy for imperialist competitive algorithm from imperialism to internationalism[J].Arabian Journal for Science and Engineering,2020:1-61.
[20] XU S,WANG Y,LU P.Improved imperialist competitive algorithm with mutation operator for continuous optimization problems[J].Neural Computing and Applications,2017,28(7):1667-1682.
[21] HEIDARI A A,MIRJALILI S,FARIS H,et al.Harris hawks optimization:algorithm and applications[J].Future Generation Computer Systems,2019,97:849-872.
[22] DEB K,AGRAWAL R B.Simulated binary crossover for continuous search space[J].Complex Systems,1995,9(2):115-148.
[23] CASTRO D,ZUBEN V.Learning and optimization using the clonal selection principle[J].IEEE Transactions on Evolutionary Computation,2002,6(3):239-251.
[24] 郭婉青.帝国竞争算法的研究与改进[D].福州:福州大学,2014.
GUO W Q,Research and improvement of empire competition algorithm[D].Fuzhou:Fuzhou University,2014.
[25] AWAD H N,ALI Z M,LIANG J J,et al.Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization[R].Singapore:Nanyang Technological University,2016.
[26] YUE T C,PRICE V K,SUGANTHAN N P,et al.Problem definitions and evaluation criteria for the CEC 2020 special session and competition on single objective bound constrained numerical optimization[R].Zhengzhou,China:Zhengzhou University.Computational Intelligence Laboratory,2019.
[27] PAN L Q,XU W T,LI L H,et al.Adaptive simulated binary crossover for rotated multi-objective optimization[J].Swarm and Evolutionary Computation,2021,60:100759.
[28] LIN J J,HUANG S C,JIAU M K.An evolutionary multiobjective carpool algorithm using set-based operator based on simulated binary crossover[J].IEEE Transactions on Cybernetics,2018,49(9):3432-3442.
[29] JIANG Q Y,WANG L,HEI X H,et al.MOEA/D-ARA+SBX:a new multi-objective evolutionary algorithm based on decomposition with artificial raindrop algorithm and simulated binary crossover[J].Knowledge-Based Systems,2016,107:197-218.
[30] LIN J L,CHOC W,CHUANH C.Imperialist competitive algorithms with perturbed moves for global optimization[J].Applied Mechanics and Materials,2013:3135-3139.
[31] 毛清华,张强.融合柯西变异和反向学习的改进麻雀算法[J].计算机科学与探索,2021,15(6):1155-1164.
MAO Q H,ZHANG Q.Improved sparrow algorithm combining Cauchy mutation and opposition-based learning[J].Journal of Frontiers of Computer Science and Technology,2021,15(6):1155-1164.
[32] 黄光球,陆秋琴.具脉冲出生和季节性捕杀的种群系统优化算法[J].计算机科学与探索,2021,15(10):2002-2014.
HUANG G Q,LU Q Q.Population system optimization algorithm with impulsive birth and seasonal killing[J].Journal of Frontiers of Computer Science and Technology,2021,15(10):2002-2014.
[33] WANG X,HAN T,ZHAO H.An estimation of distribution algorithm with multi-leader search[J].IEEE Access,2020,8:37383-37405.
[34] 王贵林,李斌.受春秋战国史实启发的帝国竞争改进算法[J].计算机应用,2021,41(2):470-478.
WANG G L,LI B.Improved imperialist competitive algorithm inspired by historical facts of Spring and Autumn Period[J].Journal of Computer Applications,2021,41(2):470-478.
[35] STANOVOV V,AKHMEDOVA S,SEMENKIN E.LSHADE algorithm with rank-based selective pressure strategy for solving CEC 2017 benchmark problems[C]//
2018 IEEE Congress on Evolutionary Computation(CEC),2018.
[36] MOHAMED A W,HADI A A,FATTOUH A M,et al.LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems[C]//2017 IEEE Congress on Evolutionary Computation(CEC),2017:145-152.
[37] BREST J,MAU?EC M S,BO?KOVI? B.Single objective real-parameter optimization:algorithm jSO[C]//2017 IEEE Congress on Evolutionary Computation(CEC),2017:1311-1318.
[38] BIEDRZYCKI R.A version of IPOP-CMA-ES algorithm with midpoint for CEC 2017 single objective bound constrained problems[C]//2017 IEEE Congress on Evolutionary Computation(CEC),2017:1489-1494.
[39] TANGHERLONI A,RUNDO L,NOBILE M S.Proactive particles in swarm optimization:a settings-free algorithm for real-parameter single objective optimization problems[C]//2017 IEEE Congress on Evolutionary Computation(CEC),2017:1940-1947.
[40] MAHARANA D,KOMMADATH R,KOTECHA P.Dynamic Yin-Yang pair optimization and its performance on single objective real parameter problems of CEC 2017[C]//2017 IEEE Congress on Evolutionary Computation(CEC),2017:2390-2396.
[41] WILCOXON F.Individual comparisons by ranking methods[J].Biometrics Bulletin,1945,1(6):80-83.
[42] VE?EK N,MERNIK M,?REPIN?EK M.A chess rating system for evolutionary algorithms:a new method for the comparison and ranking of evolutionary algorithms[J].Information Sciences,2014,277:656-679.
[43] SALGOTRA R,SINGH U,SAHA S,et al.Improving cuckoo search:incorporating changes for CEC 2017 and CEC 2020 Benchmark Problems[C]//2020 IEEE Congress on Evolutionary Computation(CEC),2020.
[44] STANOVOV V,AKHMEDOVA S,SEMENKIN E.Ranked archive differential evolution with selective pressure for CEC 2020 numerical optimization[C]//2020 IEEE Congress on Evolutionary Computation(CEC),2020.
[45] MOHAMED A K,HADI A A,MOHAMED A W.Generalized adaptive differential evolution algorithm for solving CEC 2020 benchmark problems[C]//2020 2nd Novel Intelligent and Leading Emerging Sciences Conference(NILES),2020:391-396.
[46] BOLUFé-R?HLER A,CHEN S.A multi-population exploration-only exploitation-only hybrid on CEC-2020 single objective bound constrained problems[C]//2020 IEEE Congress on Evolutionary Computation(CEC),2020.
[47] MOHAMED A W,HADI A A,MOHAMED A K,et al.Evaluating the performance of adaptive gaining sharing knowledge based algorithm on CEC 2020 benchmark problems[C]//2020 IEEE Congress on Evolutionary Computation(CEC),2020.
[48] SALLAM K M,ELSAYED S M,CHAKRABORTTY R K,et al.Improved multi-operator differential evolution algorithm for solving unconstrained problems[C]//2020 IEEE Congress on Evolutionary Computation(CEC),2020.