Detection of Blocked Pedestrians Based on RDB-YOLOv4 in Coal Mine
XIE Binhong, YUAN Shuai, GONG Dali
1.School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.Jingying Shuzhi Technology Co., Ltd., Taiyuan 030000, China
XIE Binhong, YUAN Shuai, GONG Dali. Detection of Blocked Pedestrians Based on RDB-YOLOv4 in Coal Mine[J]. Computer Engineering and Applications, 2022, 58(5): 200-207.
[1] WOJEK C,DOLLAR P,SCHIELE B,et al.Pedestrian detection:an evaluation of the state of the art[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2012,34(4):743.
[2] DALAL N.Histograms of oriented gradients for human detection[C]//Proc CVPR,2005.
[3] MITA T,KANEKO T,HORI O.Joint haar-like features for face detection[C]//Tenth IEEE International Conference on Computer Vision(ICCV’05),2005:1619-1626.
[4] AHONEN T,HADID A,PIETIK?INEN M.Face recognition with local binary patterns[C]//European Conference on Computer Vision,2004:469-481.
[5] WU B,NEVATIA R.Detection of multiple,partially occluded humans in a single image by bayesian combination of edgelet part detectors[C]//Tenth IEEE International Conference on Computer Vision(ICCV’05),2005:90-97.
[6] MATHIAS M,BENENSON R,TIMOFTE R,et al.Handling occlusions with franken-classifiers[C]//Proceedings of the IEEE International Conference on Computer Vision,2013:1505-1512.
[7] FELZENSZWALB P,GIRSHICK R,MCALLESTER D,et al.Cascade object detection with deformable part models[J].Communications of the ACM,2013,56(9):97-105.
[8] OUYANG W,WANG X.A discriminative deep model for pedestrian detection with occlusion handling[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition,2012:3258-3265.
[9] OUYANG W,WANG X.Joint deep learning for pedestrian detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2013:2056-2063.
[10] TIAN Y,LUO P,WANG X,et al.Deep learning strong parts for pedestrian detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1904-1912.
[11] ZHANG S,YANG J,SCHIELE B.Occluded pedestrian detection through guided attention in CNNs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:6995-7003.
[12] BELL S,LAWRENCE ZITNICK C,BALA K,et al.Inside-outside net:detecting objects in context with skip pooling and recurrent neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2874-2883.
[13] ZHOU C,YUAN J.Multi-label learning of part detectors for occluded pedestrian detection[J].Pattern Recognition,2019,86:99-111.
[14] WANG X,XIAO T,JIANG Y,et al.Repulsion loss:detecting pedestrians in a crowd[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7774-7783.
[15] 陈宁,李梦璐,袁皓,等.遮挡情形下的行人检测方法综述[J].计算机工程与应用,2020,56(16):13-20.
CHEN Ning,LI Menglu,YUAN Hao,et al.Review of pedestrian detection with occlusion[J].Computer Engineering and Applications,2020,56(16):13-20.
[16] ZHANG Y,TIAN Y,KONG Y,et al.Residual dense network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:2472-2481.
[17] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[18] LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:8759-8768.
[19] BODLA N,SINGH B,CHELLAPPA R,et al.Soft-NMS—improving object detection with one line of code[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:5561-5569.
[20] RUSSAKOVSKY O,DENG J,SU H,et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252.
[21] ZHOU X,WANG D,KR?HENBüHL P.Objects as points[J].arXiv:1904.07850,2019.
[22] DUAN K,BAI S,XIE L,et al.Centernet:keypoint triplets for object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2019:6569-6578.
[23] YIN T,ZHOU X,KR?HENBüHL P.Center-based 3D object detection and tracking[J].arXiv:2006.11275,2020.
[24] 王丹峰,陈超波,马天力,等.基于深度可分离卷积的YOLOv3行人检测算法[J].计算机应用与软件,2020,37(6):218-223.
WANG Danfeng,CHEN Chaobo,MA Tianli,et al.YOLOv3 pedestrian detection algorithm based on depth-wise separable convolution[J].Computer Applications and Software,2020,37(6):218-223.