[1] 徐凌伟,于旭,林文忠,移动协作通信网络的物理层安全性能研究[J].聊城大学学报(自然科学版),2019,32(4):95-100.
XU L W,YU X,LIN W Z.Research on physical layer security performance of mobile cooperative communication network[J].Journal of Liaocheng University(Natural Science Edition),2019,32(4):95-100.
[2] NEGASH N,CHE X D.An overview of modern botnets[J].Information Security Journal:A Global Perspective,2015,24:127-132.
[3] HWANG R H,PENG M C,HUANG C W,et al.An unsupervised deep learning model for early network traffic anomaly detection[J].IEEE Access,2020,8:30387-30399.
[4] GAO M,MA L,LIU H,et al.Malicious network traffic detection based on deep neural networks and association analysis[J].Sensors,2020,20(5):1452.
[5] 罗扶华,张爱新.基于深度学习的僵尸网络检测技术研究[J].通信技术,2020,53(1):174-179.
LUO F H,ZHANG A X.Research on botnet detection technology based on deep learning[J].Communication Technology,2020,53(1):174-179.
[6] SRIRAM S,VINAYAKUMAR R,ALAZAB M,et al.Network flow based IoT botnet attack detection using deep learning[C]//2020 IEEE Conference on Computer Communications Workshops,Toronto,2020:189-194.
[7] YINKA-BANJO C,UGOT O-A.A review of generative adversarial networks and its application in cybersecurity[J].Artificial Intelligence Review,2020,53(3):1721-1736.
[8] LIU Q,MA G,CHENG C.Data fusion generative adversarial network for multi-class imbalanced fault diagnosis of rotating machinery[J].IEEE Access,2020,8:70111-70124.
[9] PATSAKIS C,CASINO F,KATOS V.Encrypted and covert DNS queries for botnets:challenges and countermeasures[J].Computers & Security,2020,88:101614.
[10] SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al.Intri-
guing properties of neural networks[C]//2nd International Conference on Learning Representations,Banff,Apr 14-16,2014.
[11] XIAO Y,PUN C M,LIU B.Crafting adversarial example with adaptive root mean square gradient on deep neural networks[J].Neurocomputing,2020,389:179-195.
[12] 张文翔.基于批量梯度的对抗样本生成方法的研究[D].武汉:华中科技大学,2019.
ZHANG W X.Research on adversarial sample generation method based on batch gradient[D].Wuhan:Huazhong University of Science and Technology,2019.
[13] 郭清杨.基于生成对抗网络的对抗样本生成[J].现代计算机,2020(7):24-28.
GUO Q Y.Adversarial sample generation based on generative adversarial network[J].Modern Computer,2020(7):24-28.
[14] 孙曦音,封化民,刘飚,等.基于GAN的对抗样本生成研究[J].计算机应用与软件,2019,36(7):202-207.
SUN X Y,FENG H M,LIU B,et al.Research on adversarial sample generation based on GAN[J].Computer Applications and Software,2019,36(7):202-207.
[15] ZHANG X,ZHOU Y,PEI S,et al.Adversarial examples detection for XSS attacks based on generative adversarial networks[J].IEEE Access,2020,8:10989-10996.
[16] 潘一鸣,林家骏.基于生成对抗网络的恶意网络流生成及验证[J].华东理工大学学报(自然科学版),2019,45(2):165-171.
PAN Y M,LIN J J.Generation and verification of malicious network flow based on generative confrontation network[J].Journal of East China University of Science and Technology(Natural Science Edition),2019,45(2):165-171.
[17] GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[C]//3rd International Conference on Learning Representations,San Diego,May 7-9,2015.
[18] GROSSE K,PAPERNOT N,MANOHARAN P,et al.Adversarial perturbations against deep neural networks for malware classification[J].arXiv:1606.04435,2016.
[19] 周文,张世琨,丁勇,等.面向低维工控网数据集的对抗样本攻击分析[J].计算机研究与发展,2020,57(4):736-745.
ZHOU W,ZHANG S K,DING Y,et al.Analysis of adversarial sample attacks for low-dimensional industrial control network datasets[J].Computer Research and Development,2020,57(4):736-745.
[20] MEIDAN Y,BOHADANA M,MATHOV Y,et al.N-BaIoT-network-based detection of IoT botnet attacks using deep autoencoders[J].IEEE Pervasive Computing,2018,17(3):12-22.