SHE Xiangyang, LI Ruixin, YE Ou. Pedestrian Re-identification Combining Random Erasing and Residual Attention Network[J]. Computer Engineering and Applications, 2022, 58(3): 215-221.
[1] 宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770-780.
SONG W R,ZHAO Q Q,CHEN C H,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12(6):770-780.
[2] LIAO S,HU Y,ZHU X,et al.Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2015:2197-2206.
[3] MA B,YU S,JURIE F.Local descriptors encoded by fisher vectors for person re-identification[C]//International Conference on Computer Vision,2012:413-422.
[4] LIU H,MA B,QIN L,et al.Set-label modeling and deep metric learning on person re-identification[J].Neurocomputing,2015,151:1283-1292.
[5] WEINBERGERK Q,SAUL K L.Distance metric learning for large margin nearest neighbor classification[J].Journal of Machine Learning Research,2009,10(1):207-244.
[6] GUILLAUMIN M,VERBEE J,SCHMID C.Is that you? Metric learning approaches for face identification[C]//Proceedings of the 12th International Conference on Computer Vision,Kyoto,Japan,2009:498-505.
[7] KOESTINGER M,HIRZER M,WOHLHART P,et al.Large scale metric learning from equivalence constraints[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition,2012:2288-2295.
[8] WANG G,YUAN Y,CHEN X,et al.Learning discriminative features with multiple granularities for person re?identification[C]//2018 ACM Conference on Multimedia,2018:274-282.
[9] LIN Y T,ZHENG L,ZHENG Z D,et al.Improving person re-identification by attribute andidentity learning[J].Pattern Recognition,2019,95:151-161.
[10] 徐家臻,李婷,杨巍.多尺度局部特征选择的行人重识别算法[J].计算机工程与应用,2020,56(2):141-145.
XU J Z,LI T,YANG W.Person re-identification by multi-scale local feature selection[J].Computer Engineering and Applications,2020,56(2):141-145.
[11] VARIOR R R,HALOI M,WANG G.Gated siamese convolutionalneural network architecture for human re-identification[C]//European Conference on Computer Vision,2016:791-808.
[12] HERMANS A,BEYER L,LEIBE B.In defense of the tripletloss for person re-identification[J].arXiv:1703. 07737,2017.
[13] CHEN W H,CHEN X T,ZHANG J G,et al.Beyond triplet loss:a deep quadruplet network for person re-identification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,Hawaii,USA:IEEE,2017:403-412.
[14] ZHENG Z D,ZHENG L,YANG Y.Pedestrian alignment network for large-scale person[J].arXiv:1707.00408,2017.
[15] SUN Y F,ZHENG L,YANG Y,et al.Beyond part models:person retrieval with refined part pooling[J].arXiv:1711. 09349,2017.
[16] 金翠,王洪元,陈首兵.基于随机擦除行人对齐网络的行人重识别方法[J].山东大学学报(工学版),2018,48(6):67-73.
JIN C,WANG H Y,CHEN S B.Person re-identification based on random erasing pedestrian alignment network method[J].Journal of Shandong University(Engineering Science),2018,48(6):67-73.
[17] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[18] WOO S,PARK J,LEE J Y,et al.Cbam:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision,2018:3-19.
[19] SUN Y,ZHENG L,DENG W,et al.SVDNet for pedestrian retrieval[J].arXiv:1703.05693,2017.
ZHENG Fengxian, WANG Xiali, HE Dandan, LI Nini, FU Yangyang, YUAN Shaoxin.
Survey of Single Image Defogging Algorithm
[J]. Computer Engineering and Applications, 2022, 58(3): 1-14.