Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (24): 29-46.DOI: 10.3778/j.issn.1002-8331.2206-0055
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHANG Rui, MENG Xiaoman, ZENG Zhiyuan, JIN Wei, WU Yichao
Online:
2022-12-15
Published:
2022-12-15
张蕊,孟晓曼,曾志远,金玮,武益超
ZHANG Rui, MENG Xiaoman, ZENG Zhiyuan, JIN Wei, WU Yichao. Review of Graph Convolutional Neural Networks in Point Cloud Semantic Segmentation[J]. Computer Engineering and Applications, 2022, 58(24): 29-46.
张蕊, 孟晓曼, 曾志远, 金玮, 武益超. 图卷积神经网络在点云语义分割中的研究综述[J]. 计算机工程与应用, 2022, 58(24): 29-46.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2206-0055
[1] 周汉飞,李禹,粟毅.利用多角度SAR数据实现三维成像[J].电子与信息学报,2013,35(10):2467-2474. ZHOU H F,LI Y,SU Y.Three-dimensional imaging with multi-aspect SAR data[J].Journal of Electronics & Information Technology,2013,35(10):2467-2474. [2] QI C R,LIU W,WU C X,et al.Frustum PointNets for 3D object detection from RGB-D data[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:918-927. [3] CORDTS M,OMRAN M,RAMOS S,et al.The cityscapes dataset for semantic urban scene understanding[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:3213-3223. [4] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft coco:common objects in context[C]//European Conference on Computer Vision.Cham:Springer,2014:740-755. [5] NGUYEN A,LE B.3D point cloud segmentation:a survey[C]//2013 6th IEEE Conference on Robotics,Automation and Mechatronics,Manila,Philippines,2013:225-230. [6] 张蕊.基于激光点云的复杂三维场景多态目标语义分割技术研究[D].郑州:战略支援部队信息工程大学,2018. ZHANG R.Research on polymorphic object semantic segmentation of complex 3D scenes based on laser point clouds[D].Zhengzhou:Strategic Support Forces Information Engineering University,2018. [7] ZHANG R,LI G,WUNDERLICH T,et al.A survey on deep learning-based precise boundary recovery of semantic segmentation for images and point clouds[J].International Journal of Applied Earth Observation and Geoinformation,2021,102:102411. [8] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [9] AJIT A,ACHARYA K,SAMANTA A.A review of convolutional neural networks[C]//2020 International Conference on Emerging Trends in Information Technology and Engineering(ic-ETITE).Vellore,India:IEEE,2020:1-5. [10] LU Y,CHEN Y,ZHAO D,et al.Graph-FCN for image semantic segmentation[C]//International Symposium on Neural Networks.Cham:Springer,2019:97-105. [11] GARCIA-GARCIA A,ORTS-ESCOLANO S,OPREA S,et al.A survey on deep learning techniques for image and video semantic segmentation[J].Applied Soft Computing,2018,70:41-65. [12] HUANG Z,WANG X,HUANG L,et al.Ccnet:criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:603-612. [13] 景庄伟,管海燕,臧玉府,等.基于深度学习的点云语义分割研究综述[J].计算机科学与探索,2021,15(1):1-26. JING Z W,GUAN H Y,ZANG Y F,et al.Survey of point cloud semantic segmentation based on deep learning[J].Journal of Frontiers of Computer Science and Technology,2021,15(1):1-26. [14] 王涛,王文举,蔡宇.基于深度学习的三维点云语义分割方法研究[J].计算机工程与应用,2021,57(23):18-26. WANG T,WANG W J,CAI Y.Research of deep learning-based semantic segmentation for 3D point cloud[J].Computer Engineering and Applications,2021,57(23):18-26. [15] 赵佳琦,周勇,何欣,等.基于深度学习的点云分割研究进展分析[J].电子与信息学报,2021,44:1-15. ZHAO J Q,ZHOU Y,HE X,et al.Research progress analysis of point cloud segmentation based on deep learning[J].Journal of Electronics & Information Technology,2021,44:1-15. [16] 徐冰冰,岑科廷,黄俊杰,等.图卷积神经网络综述[J].计算机学报,2020,43(5):755-780. XU B B,CEN K T,HUANG J J,et al.A survey on graph convolutional neural network[J].Chinese Journal of Computers,2020,43(5):755-780. [17] ZHANG S,TONG H,XU J,et al.Graph convolutional networks:a comprehensive review[J].Computational Social Networks,2019,6(1):1-23. [18] YOO H J.Deep convolution neural networks in computer vision:a review[J].IEIE Transactions on Smart Processing and Computing,2015,4(1):35-43. [19] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251. ZHOU F Y,JIN L P,DONG J.Review of convolutional neural network[J].Chinese Journal of Computers,2017,40(6):1229-1251. [20] 尹宝才,王文通,王立春.深度学习研究综述[J].北京工业大学学报,2015,41(1):48-59. YIN B C,WANG W T,WANG L C.Review of deep learning[J].Journal of Beijing University of Technology,2015,41(1):48-59. [21] VOULODIMOS A,DOULAMIS N,DOULAMIS A,et al.Deep learning for computer vision:a brief review[J].Computational Intelligence and Neuroscience,2018:7068349. [22] WU B C,WAN A,YUE X Y,et al.SqueezeSeg:convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]//2018 IEEE International Conference on Robotics and Automation.Brisbane,QLD,Australia:IEEE,2018:1887-1893. [23] WU B C,ZHOU X Y,ZHAO S C,et al.SqueezeSegV2:improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud[C]//2019 International Conference on Robotics and Automation(ICRA).Montreal,QC,Canada:IEEE,2019:4376-4382. [24] IMAD M,DOUKHI O,LEE D J.Transfer learning based semantic segmentation for 3D object detection from point cloud[J].Sensors,2021,21(12):3964. [25] WANG P S,LIU Y,GUO Y X,et al.O-CNN:Octree-based convolutional neural networks for 3D shape analysis[J].ACM Transactions on Graphics(TOG),2017,36(4):1-11. [26] TCHAPMI L,CHOY C,ARMENI I,et al.Segcloud:semantic segmentation of 3D point clouds[C]//2017 International Conference on 3D Vision(3DV),2017:537-547. [27] MENG H Y,GAO L,LAI Y K,et al.VV-net:voxel VAE net with group convolutions for point cloud segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).Seoul,Korea(South):IEEE,2019:8499-8507. [28] SU H,MAJI S,KALOGERAKIS E,et al.Multi-view convolutional neural networks for 3D shape recognition[C]//2015 IEEE International Conference on Computer Vision.Santiago,Chile:IEEE,2015:945-953. [29] YU T,MENG J J,YUAN J S.Multi-view harmonized bilinear network for 3D object recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:186-194. [30] JIANG J,BAO D,CHEN Z,et al.MLVCNN:multi-loop-view convolutional neural network for 3D shape retrieval[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:8513-8520. [31] QI C R,SU H,MO K,et al.Pointnet:deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:77-85. [32] QI C R,YI L,SU H,et al.Pointnet++:deep hierarchical feature learning on point sets in a metric space[C]//31st Annual Conference on Neural Information Processing Systems,2017:5100-5109. [33] ZHANG Z Y,HUA B S,CHEN W,et al.Global context aware convolutions for 3D point cloud understanding[C]//2020 International Conference on 3D Vision(3DV).Fukuoka,Japan:IEEE,2020:210-219. [34] XU Y,FAN T,XU M,et al.Spidercnn:deep learning on point sets with parameterized convolutional filters[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:87-102. [35] HUA B S,TRAN M K,YEUNG S K.Pointwise convolutional neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:984-993. [36] KOMARICHEV A,ZHONG Z C,HUA J.A-CNN:annularly convolutional neural networks on point clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA:IEEE,2019:7413-7422. [37] LIU F Y,LI S P,ZHANG L Q,et al.3DCNN-DQN-RNN:a deep reinforcement learning framework for semantic parsing of large-scale 3D point clouds[C]//2017 IEEE International Conference on Computer Vision.Venice,Italy:IEEE,2017:5679-5688. [38] HUANG Q G,WANG W Y,NEUMANN U.Recurrent slice networks for 3D segmentation of point clouds[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:2626-2635. [39] YE X,LI J,HUANG H,et al.3d recurrent neural networks with context fusion for point cloud semantic segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:403-417. [40] QIN C,YOU H,WANG L,et al.PointDAN:a multi-scale 3D domain adaption network for point cloud representation[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems,2019:7192-7203. [41] HAN Z Z,WANG X Y,LIU Y S,et al.Multi-angle point cloud-VAE:unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).Seoul,Korea(South):IEEE,2019:10441-10450. [42] CHEN N L,LIU L J,CUI Z M,et al.Unsupervised learning of intrinsic structural representation points[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA:IEEE,2020:9118-9127. [43] WANG Y,SUN Y,LIU Z,et al.Dynamic graph CNN for learning on point clouds[J].ACM Transactions on Graphics,2019,38(5):1-12. [44] ZHANG K,HAO M,WANG J,et al.Linked dynamic graph CNN:learning on point cloud via linking hierarchical features[J].arXiv:1904.10014,2019. [45] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:2261-2269. [46] XIU H Y,SHINOHARA T,MATSUOKA M.Dynamic-scale graph convolutional network for semantic segmentation of 3D point cloud[C]//2019 IEEE International Symposium on Multimedia.San Diego,CA,USA:IEEE,2019:2711-2717. [47] LIU J X,NI B B,LI C Y,et al.Dynamic points agglomeration for hierarchical point sets learning[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).Seoul,Korea(South):IEEE,2019:7545-7554. [48] LIANG Z D,YANG M,DENG L Y,et al.Hierarchical depthwise graph convolutional neural network for 3D semantic segmentation of point clouds[C]//2019 International Conference on Robotics and Automation(ICRA).Montreal,QC,Canada:IEEE,2019:8152-8158. [49] ALI KHAN S,SHI Y L,SHAHZAD M,et al.FGCN:deep feature-based graph convolutional network for semantic segmentation of urban 3D point clouds[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).Seattle,WA,USA:IEEE,2020:778-787. [50] LUO N,YU H,HUO Z,et al.KVGCN:a KNN searching and VLAD combined graph convolutional network for point cloud segmentation[J].Remote Sensing,2021,13(5):1003. [51] JéGOU H,DOUZE M,SCHMID C,et al.Aggregating local descriptors into a compact image representation[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Francisco,CA,USA,2010:3304-3311. [52] LIN Z H,HUANG S Y,WANG Y C F.Learning of 3D graph convolution networks for point cloud analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(8):4212-4224. [53] LI R,ZHANG Y,NIU D,et al.PointVGG:graph convolutional network with progressive aggregating features on point clouds[J].Neurocomputing,2021,429:187-198. [54] WANG Y,ZHANG Z,ZHONG R,et al.Densely connected graph convolutional network for joint semantic and instance segmentation of indoor point clouds[J].ISPRS Journal of Photogrammetry and Remote Sensing,2021,182:67-77. [55] CHEN L,ZHANG Q.DDGCN:graph convolution network based on direction and distance for point cloud learning[J].The Visual Computer,2022:1-11. [56] BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[C]//2nd International Conference on Learning Representations,2014. [57] DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems,2016:3844-3852. [58] WANG C,SAMARI B,SIDDIQI K.Local spectral graph convolution for point set feature learning[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:52-66. [59] TE G,HU W,ZHENG A,et al.Rgcnn:regularized graph CNN for point cloud segmentation[C]//Proceedings of the 26th ACM International Conference on Multimedia,2018:746-754. [60] LU Q,CHEN C,XIE W,et al.PointNGCNN:deep convolutional networks on 3D point clouds with neighborhood graph filters[J].Computers & Graphics,2020,86:42-51. [61] LI W J,MA Q W,TIAN W C,et al.Graph convolution network with double filter for point cloud segmentation[C]//2020 5th International Conference on Intelligent Informatics and Biomedical Sciences(ICIIBMS),Okinawa,Japan,2020:168-173. [62] CHEN C,FRAGONARA L Z,TSOURDOS A.GAPNet:graph attention based point neural network for exploiting local feature of point cloud[J].arXiv:1905.08705,2019. [63] LI Z,ZHANG J,LI G,et al.Graph attention neural networks for point cloud recognition[C]//2019 IEEE International Conference on Multimedia and Expo(ICME),2019:387-392. [64] WANG L,HUANG Y C,HOU Y L,et al.Graph attention convolution for point cloud semantic segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA:IEEE,2019:10288-10297. [65] CHEN C,QIAN S,FANG Q,et al.Hapgn:hierarchical attentive pooling graph network for point cloud segmentation[J].IEEE Transactions on Multimedia,2020,23:2335-2346. [66] MA Y N,GUO Y L,LIU H,et al.Global context reasoning for semantic segmentation of 3D point clouds[C]//2020 IEEE Winter Conference on Applications of Computer Vision.Snowmass,CO,USA:IEEE,2020:2920-2929. [67] JIANG T,SUN J,LIU S,et al.Hierarchical semantic segmentation of urban scene point clouds via group proposal and graph attention network[J].International Journal of Applied Earth Observation and Geoinformation,2021,105:102626. [68] HU H,WANG F,LE H.VA-GCN:a vector attention graph convolution network for learning on point clouds[J].arXiv:2106.00227,2021. [69] KANG Z,LI N.PyramNet:point cloud pyramid attention network and graph embedding module for classification and segmentation[J].arXiv:1906.03299,2019. [70] XIE Z,CHEN J,PENG B.Point clouds learning with attention-based graph convolution networks[J].Neurocomputing,2020,402:245-255. [71] DU Z,YE H,CAO F.A novel local-global graph convolutional method for point cloud semantic segmentation[J].IEEE Transactions on Neural Networks and Learning Systems,2022. [72] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:770-778. [73] YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[C]//International Commission for Labour Rights(ICLR 2016),2015. [74] LI G H,MüLLER M,THABET A,et al.DeepGCNs:can GCNs go as deep as CNNs?[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).Seoul,Korea(South):IEEE,2019:9266-9275. [75] LI G,XIONG C,THABET A,et al.DeeperGCN:all you need to train deeper gcns[J].arXiv:2006.07739,2020. [76] LI G,MüLLER M,QIAN G,et al.DeepGCNs:making GCNs go as deep as CNNs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,99:1. [77] 柴玉晶,马杰,刘红.用于点云语义分割的深度图注意力卷积网络[J].激光与光电子学进展,2021,58(12):192-199. CHAI Y J,MA J,LIU H.Deep graph attention convolution network for point cloud semantic segmentation[J].Laser & Optoelectronics Progress,2021,58(12):192-199. [78] WANG X Y,JIANG B,ZHANG Z H,et al.DeepGCNs-att for point cloud semantic segmentation[J].Journal of Physics:Conference Series,2021(1):012059. [79] JIANG B,WANG X,HUANG L,et al.DeepGCNs-Att:Point cloud semantic segmentation with contextual point representations[J].Journal of Intelligent & Fuzzy Systems,2022,42(4):3827-3836. [80] JIANG M,WU Y,ZHAO T,et al.Pointsift:a sift-like network module for 3d point cloud semantic segmentation[J].arXiv:1807.00652,2018. [81] CAI G,JIANG Z,WANG Z,et al.Spatial aggregation net:point cloud semantic segmentation based on multi-directional convolution[J].Sensors,2019,19(19):4329. [82] ZHANG W,SU S,WANG B,et al.Local k-NNs pattern in omni-direction graph convolution neural network for 3D point clouds[J].Neurocomputing,2020,413:487-498. [83] FENG M,ZHANG L,LIN X,et al.Point attention network for semantic segmentation of 3D point clouds[J].Pattern Recognition,2020,107:107446. [84] DU J,JIANG Z,HUANG S,et al.Point cloud semantic segmentation network based on multi-scale feature fusion[J].Sensors,2021,21(5):1625. [85] ENGELMANN F,KONTOGIANNI T,LEIBE B.Dilated point convolutions:on the receptive field size of point convolutions on 3D point clouds[C]//2020 IEEE International Conference on Robotics and Automation,Paris,France,2020:9463-9469. [86] WAN J,XIE Z,XU Y,et al.DGANet:a dilated graph attention-based network for local feature extraction on 3D point clouds[J].Remote Sensing,2021,13(17):3484. [87] WANG L,WU J J,LIU X Y,et al.Semantic segmentation of large-scale point clouds based on dilated nearest neighbors graph[J].Complex & Intelligent Systems,2022,8(5):3833-3845. [88] HU Q Y,YANG B,XIE L H,et al.RandLA-net:efficient semantic segmentation of large-scale point clouds[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA:IEEE,2020:11105-11114. [89] ZHAO H S,JIANG L,JIA J Y,et al.Point transformer[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV).Montreal,QC,Canada:IEEE,2021:16239-16248. [90] MAO Y,SUN X,DIAO W,et al.Semantic segmentation for point cloud scenes via dilated graph feature aggregation and pyramid decoders[J].arXiv:2204.04944,2022. [91] LANDRIEU L,SIMONOVSKY M.Large-scale point cloud semantic segmentation with superpoint graphs[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:4558-4567. [92] LANDRIEU L,BOUSSAHA M.Point cloud oversegmentation with graph-structured deep metric learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA:IEEE,2019:7432-7441. [93] LI Y,MA L F,ZHONG Z L,et al.TGNet:geometric graph CNN on 3-D point cloud segmentation[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(5):3588-3600. [94] BAZAZIAN D,NAHATA D.DCG-net:dynamic capsule graph convolutional network for point clouds[J].IEEE Access,2020,8:188056-188067. [95] LEI H,AKHTAR N,MIAN A.Spherical kernel for efficient graph convolution on 3d point clouds[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(10):3664-3680. [96] ZHOU H R,FENG Y D,FANG M S,et al.Adaptive graph convolution for point cloud analysis[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV).Montreal,QC,Canada:IEEE,2021:4945-4954. [97] KIM S,ALEXANDER D C.AGCN:adversarial graph convolutional network for 3D point cloud segmentation[C]//British Machine Vision Conference(BMVC),2021. [98] SUN Y L,MIAO Y W,CHEN J Z,et al.PGCNet:patch graph convolutional network for point cloud segmentation of indoor scenes[J].The Visual Computer,2020,36(10):2407-2418. [99] MO K C,ZHU S L,CHANG A X,et al.PartNet:a large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA:IEEE,2019:909-918. [100] YI L,KIM V G,CEYLAN D,et al.A scalable active framework for region annotation in 3d shape collections[J].ACM Transactions on Graphics(ToG),2016,35(6):1-12. [101] ARMENI I,SENER O,ZAMIR A R,et al.3D semantic parsing of large-scale indoor spaces[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:1534-1543. [102] DAI A,CHANG A X,SAVVA M,et al.ScanNet:richly-annotated 3D reconstructions of indoor scenes[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:2432-2443. [103] HACKEL T,SAVINOV N,LADICKY L,et al.Semantic3d net:a new large-scale point cloud classification benchmark[J].ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2017:91-98. [104] GAIDON A,WANG Q,CABON Y,et al.Virtual worlds as proxy for multi-object tracking analysis[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:4340-4349. [105] ROYNARD X,DESCHAUD J E,GOULETTE F.Paris-Lille-3D:a large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification[J].The International Journal of Robotics Research,2018,37(6):545-557. |
[1] | WANG Peng, WANG Yulin, JIAO Bowen, WANG Hongchang, YU Yixuan. Research on Road Target Detection Algorithm Based on YOLOv5 [J]. Computer Engineering and Applications, 2023, 59(1): 117-125. |
[2] | LIU Zhao, YANG Fan, SI Yazhong. Research on Temporal None Padding Network Video Action Recognition Algorithm [J]. Computer Engineering and Applications, 2023, 59(1): 162-168. |
[3] | WU Liangwu, ZHOU Yongxia, WANG Yuhang, ZHU Yuping. Multi-Attention Mechanism Pyramid Pooling Method for Scratch Segmentation of Gold Finger [J]. Computer Engineering and Applications, 2023, 59(1): 213-220. |
[4] | TIAN Min, LIU Mingguo, CHEN Lijia, HAN Zonghuan, LAN Tianxiang, LIANG Qian. Research on New Style Transfer Network for Sample Expansion [J]. Computer Engineering and Applications, 2023, 59(1): 228-235. |
[5] | GUO Zhitao, ZHOU Feng, ZHAO Linlin, YUAN Jinli, LU Chenggang. LDCT Image Denoising Based on Edge Protection and Multi-Stage Network [J]. Computer Engineering and Applications, 2023, 59(1): 252-258. |
[6] | TAN Rongjie, HONG Zhiyong, YU Wenhua, ZENG Zhiqiang. Decentralized Federated Learning Strategy for Non-Independent and Identically Distributed Data [J]. Computer Engineering and Applications, 2023, 59(1): 269-277. |
[7] | LI Xiang, ZHANG Tao, ZHANG Zhe, WEI Hongyang, QIAN Yurong. Survey of Transformer Research in Computer Vision [J]. Computer Engineering and Applications, 2023, 59(1): 1-14. |
[8] | WAN Duo, HU Moufa, XIAO Shanzhu, ZHANG Yan. Survey on Heterogeneous Parallel Computing Platform for Edge Intelligent Computing [J]. Computer Engineering and Applications, 2023, 59(1): 15-25. |
[9] | GAO Guangshang. Survey on Attention Mechanisms in Deep Learning Recommendation Models [J]. Computer Engineering and Applications, 2022, 58(9): 9-18. |
[10] | JI Meng, HE Qinglong. AdaSVRG: Accelerating SVRG by Adaptive Learning Rate [J]. Computer Engineering and Applications, 2022, 58(9): 83-90. |
[11] | LUO Xianglong, GUO Huang, LIAO Cong, HAN Jing, WANG Lixin. Spatiotemporal Short-Term Traffic Flow Prediction Based on Broad Learning System [J]. Computer Engineering and Applications, 2022, 58(9): 181-186. |
[12] | Alim Samat, Sirajahmat Ruzmamat, Maihefureti, Aishan Wumaier, Wushuer Silamu, Turgun Ebrayim. Research on Sentence Length Sensitivity in Neural Network Machine Translation [J]. Computer Engineering and Applications, 2022, 58(9): 195-200. |
[13] | CHEN Yixiao, Alifu·Kuerban, LIN Wenlong, YUAN Xu. CA-YOLOv5 for Crowded Pedestrian Detection [J]. Computer Engineering and Applications, 2022, 58(9): 238-245. |
[14] | FANG Yiqiu, LU Zhuang, GE Junwei. Forecasting Stock Prices with Combined RMSE Loss LSTM-CNN Model [J]. Computer Engineering and Applications, 2022, 58(9): 294-302. |
[15] | ZHANG Xin, YAO Qing’an, ZHAO Jian, JIN Zhenjun, FENG Yuncong. Image Semantic Segmentation Based on Fully Convolutional Neural Network [J]. Computer Engineering and Applications, 2022, 58(8): 45-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||