Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (24): 47-60.DOI: 10.3778/j.issn.1002-8331.2205-0397
• Research Hotspots and Reviews • Previous Articles Next Articles
HU Ruijuan, ZHOU Huijuan, LIU Haiyan, LI Jian
Online:
2022-12-15
Published:
2022-12-15
胡瑞娟,周会娟,刘海砚,李健
HU Ruijuan, ZHOU Huijuan, LIU Haiyan, LI Jian. Survey on Document-Level Event Extraction Based on Deep Learning[J]. Computer Engineering and Applications, 2022, 58(24): 47-60.
胡瑞娟, 周会娟, 刘海砚, 李健. 基于深度学习的篇章级事件抽取研究综述[J]. 计算机工程与应用, 2022, 58(24): 47-60.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2205-0397
[1] WU X D,WU J,FU X Y,et al.Automatic knowledge graph construction:a report on the 2019 ICDM/ICBK contest[C]//2019 IEEE International Conference on Data Mining.Beijing,China:IEEE,2019:1540-1545. [2] BOSSELUT A,CHOI Y.Dynamic knowledge graph construction for zero-shot commonsense question answering[C]//Association for the Advancement of Artificial Intelligence(AAAI),2021. [3] LIU C Y,ZHOU C,JIA W,et al.CPMF:a collective pair wise matrix factorization model for upcoming event rec-ommendation[C]//2017 International Joint Conference on Neural Networks(IJCNN),2017:1532-1539. [4] GAO L,WU J,QIAO Z,et al.Collaborative social group influence for event recommendation[C]//Proceedings of the 25th ACM International Conference on Information and Knowledge Management,Indianapolis,Indiana,USA.New York,NY,USA:ACM,2016:1941-1944. [5] BOYD-GRABER J,B?RSCHINGER B.What question answering can learn from trivia nerds[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg,PA,USA:Association for Computational Linguistics,2020. [6] CAO Q Q,TRIVEDI H,BALASUBRAMANIAN A,et al.DeFormer:decomposing pre-trained transformers for faster question answering[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg,PA,USA:Association for Computational Linguistics,2020. [7] SU X,XUE S,LIU F,et al.A comprehensive survey on community detection with deep learning[J].IEEE Transactions on Neural Networks and Learning Systems,2021:1-29. [8] LIU F Z,XUE S,WU J,et al.Deep learning for community detection:progress,challenges and opportunities[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,July 11-17,2020. [9] MA X X,WU J,XUE S,et al.A comprehensive survey on graph anomaly detection with deep learning[J].IEEE Transactions on Knowledge and Data Engineering,2021:1-31. [10] 高李政,周刚,罗军勇,等.元事件抽取研究综述[J].计算机科学,2019,46(8):9-15. GAO L Z,ZHOU G,LUO J Y,et al.Survey on meta-event extraction[J].Computer Science,2019,46(8):9-15. [11] DODDINGTON G.The automatic content extraction (ACE) program-tasks,data,and evaluation[C]//Proceedings of the 2004 International Conference on Language Resources and Evaluation,2004. [12] QI L,JI H,LIANG H.Joint event extraction via structured prediction with global features[C]//Meeting of the Association for Computational Linguistics,2013. [13] NGUYEN T H,GRISHMAN R.Event detection and domain adaptation with convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 2:Short Papers),Beijing,China.Stroudsburg,PA,USA:Association for Computational Linguistics,2015:365-371. [14] CHEN Y B,XU L H,LIU K,et al.Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1:Long Papers),Beijing,China.Stroudsburg,PA,USA:Association for Computational Linguistics,2015. [15] FENG X C,QIN B,LIU T.A language-independent neural network for event detection[J].Science China Information Sciences,2018,61(9):1-12. [16] HOGENBOOM F,FRASINCAR F,KAYMAK U,et al.A survey of event extraction methods from text for decision support systems[J].Decision Support Systems,2016,85:12-22. [17] YANG H,CHEN Y B,LIU K,et al.DCFEE:a document-level Chinese financial event extraction system based on automatically labeled training data[C]//Proceedings of ACL 2018,System Demonstrations,Melbourne,Australia.Stroudsburg,PA,USA:Association for Computational Linguistics,2018. [18] NGUYEN T H,CHO K,GRISHMAN R.Joint event extraction via recurrent neural networks[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,San Diego,California.Stroudsburg,PA,USA:Association for Computational Linguistics,2016. [19] CHAN Y S,FASCHING J,QIU H,et al.Rapid customi- zation for event extraction[J].arXiv:1809.07783,2018. [20] CAO Y,PENG H,WU J,et al.Knowledge-preserving incremental social event detection via heterogeneous GNNs[C]//Proceedings of the Web Conference,2021:3383-3395. [21] LU Y,LIN H,XU J,et al.Text2event:controllable sequence-to-structure generation for end-to-end event extraction[J].arXiv:2106.09232,2021. [22] SUBBURATHINAM A,LU D,JI H,et al.Cross-lingual structure transfer for relation and event extraction[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP),Hong Kong,China.Stroudsburg,PA,USA:Association for Computational Linguistics,2019. [23] MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[J].arXiv:1301.3781,2013 [24] PENNINGTON J,SOCHER R,MANNING C.Glove:global vectors for word representation[C]//Conference on Empirical Methods in Natural Language Processing,2014. [25] PETERS M,NEUMANN M,IYYER M,et al.Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long Papers),New Orleans,Louisiana.Stroudsburg,PA,USA:Association for Computational Linguistics,2018. [26] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [27] ZHU Z,LI S S,ZHOU G D,et al.Bilingual event extraction:a case study on trigger type determination[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics(Volume 2:Short Papers),Baltimore,Maryland.Stroudsburg,PA,USA:Association for Computational Linguistics,2014. [28] 罗明,黄海量.基于词汇-语义模式的金融事件信息抽取方法[J].计算机应用,2018,38(1):84-90. LUO M,HUANG H L.Information extraction method of financial events based on lexical-semantic pattern[J].Journal of Computer Applications,2018,38(1):84-90. [29] LIU S L,CHEN Y B,HE S Z,et al.Leveraging FrameNet to improve automatic event detection[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),Berlin,Germany.Stroudsburg,PA,USA:Association for Computational Linguistics,2016. [30] 游飞.基于深度学习的军事事件抽取研究[D].北京:中国电子科技集团公司电子科学研究院,2018. YOU F.Research on military event extraction based on deep learning[D].Beijing:Electronic Science Research Institute of China Electronics Technology Corporation,2018. [31] 路扬.面向小样本不平衡数据的生物医学事件抽取方法研究[D].长春:吉林大学,2019. LU Y.Research on biomedical event extraction method for small sample unbalanced data[D].Changchun:Jilin University,2019. [32] 田梓函,李欣.基于BERT-CRF模型的中文事件检测方法研究[J].计算机工程与应用,2021,57(11):135-139. TIAN Z H,LI X.Research on Chinese event detection method based on BERT-CRF model[J].Computer Engineering and Applications,2021,57(11):135-139. [33] LIU S L,CHEN Y B,LIU K,et al.Exploiting argument information to improve event detection via supervised attention mechanisms[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),Vancouver,Canada.Stroudsburg,PA,USA:Association for Computational Linguistics,2017. [34] 黄细凤.基于动态掩蔽注意力机制的事件抽取[J].计算机应用研究,2020,37(7):1964-1968. HUANG X F.Event extraction based on dynamic masked attention[J].Application Research of Computers,2020,37(7):1964-1968. [35] 曹渝昆,孙涛.基于GLSTM和Attention的中文事件要素提取[J].计算机工程与应用,2022,58(6):157-163. CAO Y K,SUN T.Chinese event argument extraction based on GLSTM and Attention[J].Computer Engineering and Applications,2022,58(6):157-163. [36] LIU X,LUO Z C,HUANG H Y.Jointly multiple events extraction via attention-based graph information aggrega-tion[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,Brussels,Belgium.Stroudsburg,PA,USA:Association for Computational Linguistics,2018. [37] YANG S,FENG D W,QIAO L B,et al.Exploring pre-trained language models for event extraction and gen-eration[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,Florence,Italy.Stroudsburg,PA,USA:Association for Computational Linguistics,2019. [38] WADDEN D,WENNBERG U,LUAN Y,et al.Entity,relation,and event extraction with contextualized span representations[J].arXiv:1909.03546,2019. [39] LOU D,LIAO Z,DENG S,et al.MLBiNet:a cross-sentence collective event detection network[J].arXiv:2105.09458.2021. [40] DU X Y,CARDIE C.Document-level event role filler extraction using multi-granularity contextualized encod-ing[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg,PA,USA:Association for Computational Linguistics,2020. [41] SHA L,QIAN F,CHANG B B,et al.Jointly extracting event triggers and arguments by dependency-bridge RNN and tensor-based argument interaction[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2018. [42] MARCHEGGIANI D,TITOV I.Encoding sentences with graph convolutional networks for semantic role labeling[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,Copenhagen,Denmark.Stroudsburg,PA,USA:Association for Computational Linguistics,2017:1506-1515. [43] CUI S,YU B,LIU T,et al.Edge-enhanced graph convolution networks for event detection with syntactic relation[C]//Conference on Empirical Methods in Natural Language Processing(EMNLP),2020:2329-2339. [44] AHMAD W U,PENG N,CHANG K W.GATE:graph attention transformer encoder for cross-lingual relation and event extraction[C]//Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence,2021:74-75. [45] 刘一仝.篇章级事件表示及相关性计算[D].哈尔滨:哈尔滨工业大学,2019. LIU Y T.Document-level event representation and correlation calculation[D].Harbin:Harbin Institute of Technology,2019. [46] ZHENG S,CAO W,XU W,et al.Doc2EDAG:an end-to-end document-level framework for Chinese financial event extraction[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP),Hong Kong,China.Stroudsburg,PA,USA:Association for Computational Linguistics,2019:337-346. [47] XU R,LIU T,LI L,et al.Document-level event extrac-tion via heterogeneous graph-based interaction model with a tracker[J].arXiv:2105.14924 2021. [48] YANG H,SUI D B,CHEN Y B,et al.Document-level event extraction via parallel prediction networks[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).Stroudsburg,PA,USA:Association for Computational Linguistics,2021:6298-6308. [49] LEVY O,SEO M,CHOI E,et al.,Zero-shot relation extraction via reading comprehension[J].arXiv:1706.04115,2017. [50] LIU J,CHEN Y B,LIU K,et al.Event extraction as machine reading comprehension[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).Stroudsburg,PA,USA:Association for Computational Linguistics,2020:1641-1651. [51] DU X,CARDIE C.Event extraction by answering(almost) natural questions[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP),2020:671-683. [52] MEHTA S,RANGWALA H,RAMAKRISHNAN N.Improving zero-shot event extraction via sentence simplification[J].arXiv:2204.02531,2022. [53] CHEN M,WU F,WANG Z,et al.Chinese event argument extraction using reading comprehension framework[C]//Proceedings of the 19th Chinese National Conference on Computational Linguistics,2020:376-389. [54] CHEN S,WANG Y,LIU J,et al.Bidirectional machine reading comprehension for aspect sentiment triplet extrac-tion[J].arXiv:2103.07665,2021. [55] KWOK C,ETZIONI O,WELD D S.Scaling question answering to the web[J].ACM Transactions on Information Systems,2001,19(3):242-262. [56] MEKALA D,SHANG J B.Contextualized weak super-vision for text classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg,PA,USA:Association for Computational Linguistics,2020:323-333. [57] WANG J,HAN B,WANG F,et al.Document-level core events extraction based on QA[J].Journal of Physics:Conference Series,2022,2171(1):012062. [58] LI F,PENG W,CHEN Y,et al.Event extraction as multi-turn question answering[C]//Findings of the Association for Computational Linguistics,2020:829-838. [59] CHEN B,LIN X,THOMAS C,et al.Joint multimedia event extraction from video and article[J].arXiv:2109.12776,2021. [60] XU Z,WANG Y,BAI L,et al.Writing style aware docu-ment-level event extraction[J].arXiv:2201.03188,2022. [61] SHA L,LI S,CHANG B,et al.Joint learning templates and slots for event schema induction[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg,USA:ACL,2016:428-434. [62] HUANG L F,CASSIDY T,FENG X C,et al.Liberal event extraction and event schema induction[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),Berlin,Germany.Stroudsburg,PA,USA:Association for Computational Linguistics,2016:258-268. [63] FERGUSON J,LOCKARD C,WELD D S,et al.Semi-supervised event extraction with paraphrase clusters[J].arXiv:1808.08622,2018. [64] AHN N.Inducing event types and roles in reverse:using function to discover theme[C]//Proceedings of the Events and Stories in the News Workshop,Vancouver,Canada.Stroudsburg,PA,USA:Association for Computational Linguistics,2017:66-76. [65] LIU X,HUANG H Y,ZHANG Y.Open domain event extraction using neural latent variable models[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,Florence,Italy.Stroudsburg,PA,USA:Association for Computational Linguistics,2019:2860-2871. [66] WANG R,ZHOU D,HE Y.Open event extraction from online text using a generative adversarial network[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing,2019:282-291. [67] MODI A,TITOV I.Inducing neural models of script knowledge[C]//Proceedings of the Eighteenth Conference on Computational Natural Language Learning,Ann Arbor,Michigan.Stroudsburg,PA,USA:Association for Computational Linguistics,2014:49-57. [68] RUDINGER R,RASTOGI P,FERRARO F,et al.Script induction as language modeling[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,Lisbon,Portugal.Stroudsburg,PA,USA:Association for Computational Linguistics,2015:1681-1686. [69] PICHOTTA K,MOONEY R J.Using sentence-level LSTM language models for script inference[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),Berlin,Germany.Stroudsburg,PA,USA:Association for Computational Linguistics,2016:279-289. [70] NAIK A,ROSE C.Towards open domain event trigger identification using adversarial domain adaptation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg,PA,USA:Association for Computational Linguistics,2020:7618-7624. [71] HUANG J,LI C,SUBUDHI K,et al.Few-shot named entity recognition:a comprehensive study[J].arXiv:2012. 14978,2020. [72] MA R T,ZHOU X,GUI T,et al.Template-free prompt tuning for few-shot NER[J].arXiv:2109.13532,2021. [73] MA Y B,WANG Z H,CAO Y X,et al.Prompt for extraction?PAIE:prompting argument interaction for event argument extraction[J].arXiv:2202.12109,2022. [74] LIU P F,YUAN W Z,FU J L,et al.Pre-train,prompt,and predict:a systematic survey of prompting methods in natural language processing[J].arXiv:2107.13586,2021. [75] DAS S S S,KATIYAR A,PASSONNEAU R J,et al.Container:few-shot named entity recognition via contrastive learning[J].arXiv:2109.07589,2021. [76] LIN J J,JIAN J,CHEN Q.Eliciting knowledge from language models for event extraction[J].arXiv:2109.05190,2021. [77] MCLEAN V.Fourth message understanding conference (muc-4)[C]//Proceedings of Fourth Message Understanding Conference(MUC-4),1992. [78] LEETARU K,SCHRODT P A.Gdelt:global data on events,location,and tone,1979-2012[C]//Annual Meeting of the International Studies Association,2013. [79] EBNER S,XIA P,CULKIN R,et al.Multi-sentence argument linking[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg,PA,USA:Association for Computational Linguistics,2020:8057-8077. [80] LI S,JI H,HAN J W.Document-level event argument extraction by conditional generation[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg,PA,USA:Association for Computational Linguistics,2021:894-908. [81] LI X Y,LI F Y,PAN L,et al.DuEE:a large-scale dataset for Chinese event extraction in real-world scenarios[C]//Natural Language Processing and Chinese Computing,2020:534-545. [82] 张亚军,刘宗田,李强,等.面向事件的中文指代语料库的构建[J].上海大学学报(自然科学版),2018,24(6):900-911. ZHANG Y J,LIU Z T,LI Q,et al.Construction of event-oriented Chinese reference corpus[J].Journal of Shanghai University(Natural Science Edition),2018,24(6):900-911. [83] WANG X,WANG Z,HAN X,et al.MAVEN:a massive general domain event detection dataset[J].arXiv:2004. 13590,2020. [84] DENG S M,ZHANG N Y,KANG J J,et al.Meta-learning with dynamic-memory-based prototypical network for few-shot event detection[C]//WSDM’20:Proceedings of the 13th International Conference on Web Search and Data Mining,2020:151-159. [85] 周梦迪.融合结构信息的小样本关系抽取技术研究[D].杭州:浙江大学,2020. ZHOU M D.Research on few-shot learning for relation extraction with structure information[D].Hangzhou:Zhejiang University,2020. [86] 罗萍,丁玲,杨雪,等.基于数据增强和弱监督对抗训练的中文事件检测[J].计算机应用,2022(1):1-7. LUO P,DING L,YANG X,et al.Chinese event detection based on data augmentation and weakly supervised adversarial training[J].Journal of Computer Applications,2022(1):1-7. [87] AMIT S.Introducing the knowledge graph[R].America: Official Blog of Google,2012. |
[1] | LI Xiang, ZHANG Tao, ZHANG Zhe, WEI Hongyang, QIAN Yurong. Survey of Transformer Research in Computer Vision [J]. Computer Engineering and Applications, 2023, 59(1): 1-14. |
[2] | WAN Duo, HU Moufa, XIAO Shanzhu, ZHANG Yan. Survey on Heterogeneous Parallel Computing Platform for Edge Intelligent Computing [J]. Computer Engineering and Applications, 2023, 59(1): 15-25. |
[3] | WANG Peng, WANG Yulin, JIAO Bowen, WANG Hongchang, YU Yixuan. Research on Road Target Detection Algorithm Based on YOLOv5 [J]. Computer Engineering and Applications, 2023, 59(1): 117-125. |
[4] | LIU Zhao, YANG Fan, SI Yazhong. Research on Temporal None Padding Network Video Action Recognition Algorithm [J]. Computer Engineering and Applications, 2023, 59(1): 162-168. |
[5] | GUO Zhitao, ZHOU Feng, ZHAO Linlin, YUAN Jinli, LU Chenggang. LDCT Image Denoising Based on Edge Protection and Multi-Stage Network [J]. Computer Engineering and Applications, 2023, 59(1): 252-258. |
[6] | TAN Rongjie, HONG Zhiyong, YU Wenhua, ZENG Zhiqiang. Decentralized Federated Learning Strategy for Non-Independent and Identically Distributed Data [J]. Computer Engineering and Applications, 2023, 59(1): 269-277. |
[7] | LUO Xianglong, GUO Huang, LIAO Cong, HAN Jing, WANG Lixin. Spatiotemporal Short-Term Traffic Flow Prediction Based on Broad Learning System [J]. Computer Engineering and Applications, 2022, 58(9): 181-186. |
[8] | Alim Samat, Sirajahmat Ruzmamat, Maihefureti, Aishan Wumaier, Wushuer Silamu, Turgun Ebrayim. Research on Sentence Length Sensitivity in Neural Network Machine Translation [J]. Computer Engineering and Applications, 2022, 58(9): 195-200. |
[9] | CHEN Yixiao, Alifu·Kuerban, LIN Wenlong, YUAN Xu. CA-YOLOv5 for Crowded Pedestrian Detection [J]. Computer Engineering and Applications, 2022, 58(9): 238-245. |
[10] | FANG Yiqiu, LU Zhuang, GE Junwei. Forecasting Stock Prices with Combined RMSE Loss LSTM-CNN Model [J]. Computer Engineering and Applications, 2022, 58(9): 294-302. |
[11] | GAO Guangshang. Survey on Attention Mechanisms in Deep Learning Recommendation Models [J]. Computer Engineering and Applications, 2022, 58(9): 9-18. |
[12] | JI Meng, HE Qinglong. AdaSVRG: Accelerating SVRG by Adaptive Learning Rate [J]. Computer Engineering and Applications, 2022, 58(9): 83-90. |
[13] | SHI Jie, YUAN Chenxiang, DING Fei, KONG Weixiang. Survey of Building Target Detection in SAR Images [J]. Computer Engineering and Applications, 2022, 58(8): 58-66. |
[14] | XIONG Fengguang, ZHANG Xin, HAN Xie, KUANG Liqun, LIU Huanle, JIA Jionghao. Research on Improved Semantic Segmentation of Remote Sensing [J]. Computer Engineering and Applications, 2022, 58(8): 185-190. |
[15] | YANG Jinfan, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, LI Kecen, GAO Jing. Review of One-Stage Vehicle Detection Algorithms Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(7): 55-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||