Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (21): 13-29.DOI: 10.3778/j.issn.1002-8331.2204-0272
• Research Hotspots and Reviews • Previous Articles Next Articles
WU Zhiyan, JIN Wei, YUE Lu, SHENG Hui
Online:
2022-11-01
Published:
2022-11-01
吴智妍,金卫,岳路,生慧
WU Zhiyan, JIN Wei, YUE Lu, SHENG Hui. Review of Research on Named Entity Recognition Technologies for Electronic Medical Records[J]. Computer Engineering and Applications, 2022, 58(21): 13-29.
吴智妍, 金卫, 岳路, 生慧. 电子病历命名实体识别技术研究综述[J]. 计算机工程与应用, 2022, 58(21): 13-29.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2204-0272
[1] 陈衡,黄刊迪.结构化电子病历概述[J].中国数字医学,2011,6(5):36-39. CHEN H,HUANG K D.The overview of structuring electronic medical record[J].China Digital Medicine,2011,6(5):36-39. [2] CHINCHOR N.MUC-6 named entity task definition(version 2.1)[C]//6th Message Understanding Conference,Columbia,Maryland,1995. [3] BITTERMAN D S,MILLER T A,MAK R H,et al.Clinical natural language processing for radiation oncology:a review and practical primer[J].International Journal of Radiateion Oncology Biology Physics,2021,110(3):641-655. [4] ROBERTS A.Language,structure,and reuse in the electronic health record[J].AMA Journal of Ethics,2017,19(3):281-288. [5] SAVOVA G K,DANCIU I,ALAMUDUN F,et al.Use of natural language processing to extract clinical cancer phenotypes from electronic medical records[J].Cancer Research,2019,79:5463-5470. [6] 杨锦锋,于秋滨,关毅,等.电子病历命名实体识别和实体关系抽取研究综述[J].自动化学报,2014,40(8):1537-1562. YANG J F,YU Q B,GUAN Y,et al.An overview of research on electronic medical record oriented named entity recognition and entity relation extraction[J].Acta Automatica Sinica,2014,40(8):1537-1562. [7] 崔博文,金涛,王建民.自由文本电子病历信息抽取综述[J].计算机应用,2021,41(4):1055-1063. CUI B W,JIN T,WANG J M.Overview of information extraction of free-text electronic medical records[J].Journal of Computer Applications,2021,41(4):1055-1063. [8] 吴宗友,白昆龙,杨林蕊,等.电子病历文本挖掘研究综述[J].计算机研究与发展,2021,58(3):513-527. WU Z Y,BAI K L,YANG L R,et al.Review on text ming of electronic medical record[J].Jonrnal of Computer Research and Development,2021,58(3):513-527. [9] 曲春燕,关毅,杨锦锋,等.中文电子病历命名实体标注语料库构建[J].高技术通讯,2015(2):143-150. QU C Y,GUAN Y,YANG J F,et al.The construction of annotated corpora of named entities for Chinese electronic medical records[J].High-Tech Communications,2015(2):143-150. [10] 杨晓辉.基于中文电子病历的冠心病危险因素抽取方法研究[D].乌鲁木齐:新疆大学,2019. YANG X H.Research on risk factors for coronary heart disease extraction based on Chinese electronic medical records[D].Urumqi:Xinjiang University,2019. [11] 杨锦锋,关毅,何彬,等.中文电子病历命名实体和实体关系语料库构建[J].软件学报,2016,27(11):2725-2746. YANG J F,GUAN Y,HE B,et al.Corpus construction for named entities and entity relations on Chinese electronic medical records[J].Journal of Software,2016,27(11):2725-2746. [12] 苏嘉,何彬,吴昊,等.基于中文电子病历的心血管疾病风险因素标注体系及语料库构建[J].自动化学报,2019,45(2):420-426. SU J,HE B,WU H,et al.Annotation scheme and corpus construction for cardiovacular diseases risk factor from Chinese electronic medical records[J].Acta Automatica Sinica,2019,45(2):420-426. [13] RAMSHAW L,MARCUS M P.Text chunking using transformation-based learning[C]//Third Workshop on Very Large Corpora,1995:82-94. [14] SANG E T,VEENSTR A J.Representing text chunks[C]//Conference of the European Chapter of the Association for Computational Linguistics,1999:173-179. [15] UCHIMOTO K,MA Q,MURATA M,et al.Named entity extraction based on a maximum entropy model and transformation rules[C]//Meeting of the Association for Computational Linguistics,2000:326-335. [16] SHANG J B,LIU L Y,GU X T,et al.Learning named entity tagger using domain-specific dictionary[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,2018:2054-2064. [17] XU Y,WANG Y,LIU T,et al.Joint segmentation and named entity recognition using dual decomposition in Chinese discharge summaries[J].Journal of the American Medical Informatics Association,2014,21:84-92. [18] WANG H,ZHANG W,ZENG Q,et al.Extracting important information from Chinese operation notes with natural language processing methods[J].Journal of Biomedical Informatics,2014,48:130-136. [19] KRAUS S,BLAKE C,WEST S L.Information extraction from medical notes[C]//Proceedings of the 12th World Congress on Health(medical),Informatics,Building,Sustainable Health System,2007:1-2. [20] RABINER L,JUANG B.An introduction to hidden Markov models[J].IEEE ASSP Magazine,1986,3(1):4-16. [21] JAYNESE T.Information theory and statistical mechanics[J].Physical Review,1957,106(4):620-630. [22] CORTES C,VAPINIK V.Support vector networks[J].Machine Learning,1995,20:273-297. [23] LAFFERTY J,MCCALLUM A,PEREIRA F C N.Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the Eighteenth International Conference on Machine Learning(ICML 2001),Williams College,USA,June 28-July 1,2001:282-289. [24] DE BRUIJN B,CHERRY C,KIRITCHENKO S,et al.Machine learned solutions for three stages of clinical information extraction:the state of the art at i2b2 2010[J].Journal of the American Medical Informatics Association,2011,18(5):557-562. [25] 张坤丽,马鸿超,赵悦淑,等.基于自然语言处理的中文产科电子病历研究[J].郑州大学学报(理学版),2017,49(4):40-45. ZHANG K L,MA H C,ZHAO Y S,et al.The study of Chinese obstetric electronic medical records based on natural language processing[J].Journal of Zhengzhou University(Natural Science Edition),2017,49(4):40-45. [26] DOAN S,XU H.Recognizing medication related entities in hospital discharge summaries using support vector machine[C]//Proceedings of 23rd International Conference on Computational Linguistics,2010:259-266. [27] JU Z,WANG J,ZHU F.Name density recognition from biomedical text using SVM[C]//Proceedings of IEEE 5th International Conference on Bioinformatics and Biomedical Engineering(ICBBE 2011),Wuhan,China,May 10-12,2011:1-4. [28] TANG B,CAO H,WU Y.Recognizing clinical entities in hospital discharge summaries usingstructural support vector machines with word representation features[J].BMC Medical Informatics Decision Making,2013,13(S1):1-10. [29] 王世昆,李绍滋,陈彤生.基于条件随机场的中医命名实体识别[J].厦门大学学报(自然科学版),2009,48(3):359-364. WANG S K,LI S Z,CHEN T S.Recognition of Chinese medicine named entity based on condition random field[J].Journal of Xiamen University(Natural Science Edition),2009,48(3):359-364. [30] YE F,CHEN Y Y,ZHOU G G,et al.Intelligent recognition of named entity in electronic medical records[J].Chinese Journal of Biomedical Engineering,2011,30(2):256-262. [31] LIU K,HU Q,LIU J.Named entity recognition in Chinese electronic medical records based on CRF[C]//Proceedings of 14th Web Information Systems and Applications Conference(WISA2017),Guangxi,China,November 11-12,2017:105-110. [32] LECUN Y,BOSER B,DENKER J S,et al.Back propagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551. [33] ARUNKUMAR K E,KALAGA D V,KUMAR C M S.Forecasting of COVID-19 using deep layer recurrent neural networks(RNNs) with gated recurrent units(GRUs) and long short-term memory(LSTM) cells[J].Chaos Solitons Fractals,2021,146:110861. [34] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [35] ZHAO R,WANG D Z,YAN R Q,et al.Machine health monitoring using local feature-based gated recurrent unit networks[J].IEEE Transactions on Industrial Electronics,2018,65(2):1539-1548. [36] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017. [37] WU Y H,JIANG M,LEI J B,et al.Named entity recognition in Chinese clinical text using deep neural network[J].Studies in Health Technology and Informatics,2015,216:624-628. [38] YANG Z,HUANG Y,JIANG Y,et al.Clinical assistant diagnosis for electronic medical record based on convolutional neural network[J].Scientific Reports,2018,8(1):1-9. [39] LI Y,XU L,TIAN F,et al.Word embedding revisited:a new representation learning and explicit matrix factorization perspective[C]//Twenty-Fourth International Joint Conference on Artificial Intelligence,2015. [40] YIN M W,MOU C J,XIONG K N,et al.Chinese clinical named entity recognition with radical-level feature and self-attention mechanism[J].Journal of Biomedical Informatics,2019,98:103289. [41] ZHOU X,LI Y,LIANG W.CNN-RNN based intelligent recommendation for online medical pre-diagnosis support[J].IEEE/ACM Trans Computer Biol Bioinform,2021,18(3):912-921. [42] AL-RAKHAMI M S,ISLAM M M,ISLAM M Z,et al.Diagnosis of COVID-19 from X-rays using combined CNN-RNN architecture with transfer learning[C]// MEDRXIV,2021:1-15. [43] LIU Z,YANG M,WANG X,et al.Entity recognition from clinical texts via recurrent neural network[J].BMC Medical Informatics & Decision Making,2017,17(2):53-61. [44] HUANG Z H,WEI X,KAI Y.Bidirectional LSTM-CRF models for sequence tagging[J].arXiv:1508.01991,2015. [45] 李纲,潘荣清,毛进,等.整合BiLSTM-CRF网络和词典资源的中文电子病历实体识别[J].现代情报,2020,40(4):3-12. LI G,PAN R Q,MAO J,et al.Entity recognition of Chinese electronic medical records based on BiLSTM-CRF network and dictionary resources[J].Journal of Modern Information,2020,40(4):3-12. [46] 屈倩倩,阚红星.基于Bert-BiLSTM-CRF的中医文本命名实体识别[J].电子设计工程,2021,29(19):40-43. QU Q Q,KAN H X.Named entity recognition of Chinese medical text based on Bert-BiLSTM-CRF[J].Electronic Design Engineering,2021,29(19):40-43. [47] ZHU H,PASCHALIDIS I C,TAHMASEBI A.Clinical concept extraction with contextual word embedding[J].arXiv:1810.10566,2018. [48] YAN J,GENG Y,XU H,et al.Research on named entity recognition in Chinese EMR based on semi-supervised learning with dual selected strategy[C]//2020 3rd International Conference on Algorithms,Computing and Artificial Intelligence,2020:1-10. [49] 吴倩倩,周蕾蕾,陆小妍,等.基于多头自注意力机制与U-Net的增强CT图像肾脏小肿瘤自动分割研究[J].中国医学装备,2022,19(2):27-31. WU Q Q,ZHOU L L,LU X Y,et al.Study on the automatic segmentation of enhanced CT image of small kidney tumors based on MHSA mechanism and U-Net[J].China Medical Equipment,2022,19(2):27-31. [50] 巩敦卫,张永凯,郭一楠,等.融合多特征嵌入与注意力机制的中文电子病历命名实体识别[J].工程科学学报,2021,43(9):1190-1196. GONG D W,ZHANG Y K,GUO Y N,et al.Named entity recognition of Chinese electronic medical records based on multifeature embedding and attention mechanism[J].Chinese Journal of Engineering,2021,43(9):1190-1196. [51] 罗熹,夏先运,安莹,等.结合多头自注意力机制与BiLSTM-CRF的中文临床实体识别[J].湖南大学学报(自然科学版),2021,48(4):45-55. LUO X,XIA X Y,AN Y,et al.Chinese CNER combined with multi-head self-attention and BiLSTM-CRF[J].Journal of Hunan University(Natural Science),2021,48(4):45-55. [52] 张世豪,杜圣东,贾真,等.基于深度神经网络和自注意力机制的医学实体关系抽取[J].计算机科学,2021,48(10):77-84. ZHANG S H,DU S D,JIA Z.Medical entity relationship extraction based on deep neural network and self-attention mechanism[J].Computer Science,2021,48(10):77-84. [53] WEI Q,CHEN T,XU R,et al.Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks[J].Database(Oxford),2016,2016:baw140. [54] 龚乐君,张知菲.基于领域词典与CRF双层标注的中文电子病历实体识[J].工程科学学报,2020,42(4):469-475. GONG L J,ZHANG,Z F.Clinical named entity recognition from Chinese electronic medical records using a double-layer annotation model combining a domain dictionary with CRF[J].Chinese Journal of Engineering,2020,42(4):469-475. [55] 陈德鑫,占袁圆,杨兵,等.基于CNN-BiLSTM模型的在线医疗实体抽取研究[J].图书情报工作,2019,63(12):105-113. CHEN D X,ZHAN Y Y,YANG B,et al.Research on extraction of online medical entities based on mixed deep learning model[J].Library and Information Service,2019,63(12):105-113. [56] 李丽双,郭元凯.基于CNN-BLSTM-CRF 模型的生物医学命名实体识别[J].中文信息学报,2018,32(1):116-122. LI L S,GUO Y K.Biomedical named entity recognition with CNN-BLSTM-CRF[J].Journal of Chinese Information Processing,2018,32(1):116-122. [57] LI X,WANG H,HE H,et al.Intelligent diagnosis with Chinese electronic medical records based on convolutional neural networks[J].BMC Bioinformatics,2019,20(1):62. [58] TANG B,WANG X,YAN J,et al.Entity recognition in Chinese clinical text using attention-based CNN-LSTM-CRF[J].BMC Medical Informatics & Decision Making,2019,19(3):74. [59] CHALAPATHY R,BORZESHI E Z,PICCARDI M.Bidirectional LSTM-CRF for clinical concept extraction[C]//Proceedings of the Clinical Natural Language Processing Workshop,2016:7-12. [60] WILLIE B,ELENA S,SAURABH K,et al.CNER 2.0:accessible and accurate clinical concept extraction[J].arXiv:1803.02245,2018. [61] ZHU H H,PASCHALIDI I C,TAHMASEBI A M.Clinical concept extraction with contextual word embedding[C]//NIPS Machine Learning for Health Workshop,2018. [62] 沈宙锋,苏前敏,郭晶磊.基于XLNet-BiLSTM的中文电子病历命名实体识别方法[J].智能计算机与应用,2021,11(8):97-102. SHEN Z F,SU Q M,GUO J L.Named entity recognition model of Chinese clinical electronic medical record based on XLNet-BiLSTM[J].Intelligent Computer and Applications,2021,11(8):97-102. [63] 杨红梅,李琳,杨日东,等.基于双向LSTM神经网络电子病历命名实体的识别模型[J].中国组织工程研究,2018,22(20):3237-3242. YANG H M,LI L,YANG R D,et al.Named entity recognition based on bidirectional long short-term memory combined with case report form[J].Journal of Clinical Rehabilitative Tissue Engineering Research,2018,22(20):3237-3242. [64] JAGANNATHA A N,HONG Y.Structured prediction models for RNN based sequence labeling in clinical text[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing,2016:856-865. [65] WESTON J,BENGIO S,USUNIER N.Wsabie:scaling up to large vocabulary image annotation[C]//The International Joint Conferences on Artificial Intelligence,2011:2764-2770. [66] SOCHER R,LIN C C Y,NG A Y,et al.Parsing natural scenes and natural language with recursive neural networks[C]//Proceedings of the 28th International Conference on Machine Learning,Bellevue,WA,USA,2011:129-136. [67] MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[J].arXiv:1301.3781,2013. [68] 黄艳群,王妮,刘红蕾,等.基于Skip-gram词嵌入算法的结构化患者特征表示方法研究[J].北京生物医学工程,2019,38(6):568-574. HUANG Y Q,WANG N,LIU H L,et al.Study on structured patient feature representation method based on Skip-gram word embedding algorithm[J].Beijing Biomedical Engineering,2019,38(6):568-574. [69] PENNINGTON J,SOCHER R,MANNING C.Glove:global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP),2014:1532 [70] 吴迪,赵玉凤.融合LDA和Glove模型的病症文本聚类算法[J].河北工程大学学报(自然科学版),2022,39(1):92-98. WU D,ZHAO Y F.Disease text clustering algorithm based on LDA and Glove model[J].Journal of Hebei University of Engineering(Natural Science Edition),2022,39(1):92-98. [71] 马满福,刘元喆,李勇,等.基于LCN的医疗知识问答模型[J].西南大学学报(自然科学版),2020,42(10):25-36. MA M F,LIU Y Z,LI Y,et al.LCN-based medical knowledge question answering model[J].Journal of Southwest University(Natural Science Edition),2020,42(10):25-36. [72] PETERS M E,NEUMANN M,IYYER M,et al.Deep contextualized word representations[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2018:2227-2237. [73] JIN Q,DHINGRA B,COHEN W W,et al.Probing biomedical embeddings from language models[J].arXiv:1904.02181,2019. [74] JOHNSON A E W,POLLARD T J,SHEN L,et al.MIMIC-III,a freely accessible critical care database[J].Scientific Data,2016,3(1):1-9. [75] YANG J,LIU Y,QIAN M,et al.Information extraction from electronic medical records using multitask recurrent neural network with contextual word embedding[J].Applied Sciences,2019,9(18):3658. [76] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2018:4171-4186. [77] 李正民,云红艳,王翊臻.基于BERT的多特征融合的医疗命名实体识别[J].青岛大学学报(自然科学版),2021,34(4):23-29. LI Z M,YUN H Y,WANG Y Z.Medical named entity recognition based on multi feature fusion of BERT[J].Journal of Qingdao University(Natural Science Edition),2021,34(4):23-29. [78] VUNIKILI R,SUPRIYA H N,MARICA V G,et al.Clinical NER using Spanish BERT embeddings[C]//Iberian Languages Evaluation Forum,2020:505-511. [79] YANG Z,DAI Z,YANG Y,et al.XLNet:generalized auto regressive pretraining for language understanding[C]//Proceedings of the 32nd Annual Conference on Neural Information Processing Systems,Vancouver,Dec 8-14,2019.Red Hook:Curran Associates,2019:5754-5764. [80] YAN R,JIANG X,DANG D.Named entity recognition by using XLNet?BiLSTM?CRF[J].Neural Processing Letters,2021,53(5):3339-3356. [81] WEN S,ZENG B,LIAO W.Named entity recognition for instructions of Chinese medicine based on pre-trained language model[C]//2021 3rd International Conference on Natural Language Processing(ICNLP),2021:139-144. [82] LEE J,YOON W,KIM S,et al.BioBERT:a pre-trained biomedical language representation model for biomedical text mining[J].Bioinformatics,2020,36(4):1234-1240. [83] YU X,HU W,LU S,et al.BioBERT based named entity recognition in electronic medical record[C]//International Conference on Information Technology in Medicine and Education(ITME),2019:49-52. [84] SYMEONIDOU A,SAZONAU V,GROTH P.Transfer learning for biomedicalnamed entity recognition with BioBERT[C]//SEMANTICS Posters & Demos,2019:1-5. [85] NASEEM U,MUSIAL K,EKLUND P,et al.Biomedical named-entity recognition by hierarchically fusing biobert representations and deep contextual-level word-embedding[C]//2020 International Joint Conference on Neural Networks(IJCNN),2020:1-8. [86] RASMY L,XIANG Y,XIE Z,et al.Med-BERT:pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction[J].NPJ Digital Medicine,2021,4(1):1-13. [87] 杨飞洪.面向中文临床自然语言处理的BERT模型研究[D].北京:北京协和医学院,2021. YANG F H.Research on BERT model for Chinese clinical language processing[D].Beijing:Peking Union Medical College,2021. [88] GAN Z,LI Z,ZHANG B,et al.Enhance both text and label:combination strategies for improving the generalization ability of medical entity extraction[C]//China Conference on Knowledge Graph and Semantic Computing.Singapore:Springer,2021:92-101. [89] ZHANG N,JIA Q,YIN K,et al.Conceptualized representation learning for Chinese biomedical text mining[J].arXiv:2008.10813,2020. [90] 唐观根.中文电子病历命名实体识别研究[D].杭州:杭州电子科技大学,2020. TANG G G.Research on named entity recognition of Chinese electronic medical records[D].Hangzhou:Hangzhou Dianzi University,2020. [91] GIORGI J M,BADER G D.Transfer learning for biomedical named entity recognition with neural networks[J].Bioinformatics,2018,34(23):4087-4094. [92] LEE J Y,DERNONCOURT F,SZOLOVITS P.Transfer learning for named-entity recognition with neural networks[J].arXiv:1705.06273,2017. [93] HOFER M,KORMILITZIN A,GOLDBERG P,et al.Few-shot learning for named entity recognition in medical text[J].arXiv:1811.05468,2018. [94] LARA-CLARES A,GARCIA-SERRANO A.Key phrases annotation in medical documents:MEDDOCAN2019 anonymization task[C]//Iberian Languages Evaluation Forum,2019:755-760. [95] XUE K,ZHOU Y,MA Z,et al.Fine-tuning BERT for joint entity and relation extraction in Chinese medical text[C]//2019 IEEE International Conference on Bioinformatics and Biomedicine,2019:892-897. |
[1] | GAO Guangshang. Survey on Attention Mechanisms in Deep Learning Recommendation Models [J]. Computer Engineering and Applications, 2022, 58(9): 9-18. |
[2] | JI Meng, HE Qinglong. AdaSVRG: Accelerating SVRG by Adaptive Learning Rate [J]. Computer Engineering and Applications, 2022, 58(9): 83-90. |
[3] | LUO Xianglong, GUO Huang, LIAO Cong, HAN Jing, WANG Lixin. Spatiotemporal Short-Term Traffic Flow Prediction Based on Broad Learning System [J]. Computer Engineering and Applications, 2022, 58(9): 181-186. |
[4] | Alim Samat, Sirajahmat Ruzmamat, Maihefureti, Aishan Wumaier, Wushuer Silamu, Turgun Ebrayim. Research on Sentence Length Sensitivity in Neural Network Machine Translation [J]. Computer Engineering and Applications, 2022, 58(9): 195-200. |
[5] | CHEN Yixiao, Alifu·Kuerban, LIN Wenlong, YUAN Xu. CA-YOLOv5 for Crowded Pedestrian Detection [J]. Computer Engineering and Applications, 2022, 58(9): 238-245. |
[6] | FANG Yiqiu, LU Zhuang, GE Junwei. Forecasting Stock Prices with Combined RMSE Loss LSTM-CNN Model [J]. Computer Engineering and Applications, 2022, 58(9): 294-302. |
[7] | SHI Jie, YUAN Chenxiang, DING Fei, KONG Weixiang. Survey of Building Target Detection in SAR Images [J]. Computer Engineering and Applications, 2022, 58(8): 58-66. |
[8] | XIONG Fengguang, ZHANG Xin, HAN Xie, KUANG Liqun, LIU Huanle, JIA Jionghao. Research on Improved Semantic Segmentation of Remote Sensing [J]. Computer Engineering and Applications, 2022, 58(8): 185-190. |
[9] | YANG Jinfan, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, LI Kecen, GAO Jing. Review of One-Stage Vehicle Detection Algorithms Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(7): 55-67. |
[10] | WANG Bin, LI Xin. Research on Multi-Source Domain Adaptive Algorithm Integrating Dynamic Residuals [J]. Computer Engineering and Applications, 2022, 58(7): 162-166. |
[11] | TAN Shuqiu, TANG Guofang, TU Yuanya, ZHANG Jianxun, GE Panjie. Classroom Monitoring Students Abnormal Behavior Detection System [J]. Computer Engineering and Applications, 2022, 58(7): 176-184. |
[12] | ZHANG Meiyu, LIU Yuehui, HOU Xianghui, QIN Xujia. Automatic Coloring Method for Gray Image Based on Convolutional Network [J]. Computer Engineering and Applications, 2022, 58(7): 229-236. |
[13] | ZHANG Zhuangzhuang, QU Licheng, LI Xiang, ZHANG Minghao, LI Zhaolu. Traffic Flow Prediction with Missing Data Based on Spatial-Temporal Convolutional Neural Networks [J]. Computer Engineering and Applications, 2022, 58(7): 259-265. |
[14] | XU Jie, ZHU Yukun, XING Chunxiao. Research on Financial Trading Algorithm Based on Deep Reinforcement Learning [J]. Computer Engineering and Applications, 2022, 58(7): 276-285. |
[15] | ZHANG Hao, ZHANG Xiaoyu, ZHANG Zhenyou, LI Wei. Summary of Intrusion Detection Models Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(6): 17-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||