Improved Particle Swarm Optimization Algorithm Based on Attraction-Repulsion and Bidirectional Learning Strategies
WANG Yawen, QIAN Qian, FENG Yong, FU Yunfa
School of Information Engineering and Automation, Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science and Technology, Kunming 650500, China
WANG Yawen, QIAN Qian, FENG Yong, FU Yunfa. Improved Particle Swarm Optimization Algorithm Based on Attraction-Repulsion and Bidirectional Learning Strategies[J]. Computer Engineering and Applications, 2022, 58(20): 79-86.
[1] KENNEDY J,EBERHART R C.Particle swarm optimization[C]//IEEE International Conference on Neural Networks,Perth,Australia,1995:1942-1948.
[2] HEWAHI N M,HAMRA E A.A hybrid approach based on genetic algorithm and particle swarm optimization to improve neural network classification[J].Journal of Information Technology Research,2017,10(3):48-68.
[3] 吴禄慎,程伟,王晓辉.应用模拟退火粒子群算法优化二维熵图像分割[J].计算机工程与设计,2019,40(9):2544-2551.
WU L S,CHENG W,WANG X H.2-D entropy image segmentation based on simulated annealing particle swarm optimization[J].Computer Engineering and Design,2019,40(9):2544-2551.
[4] 翁文文,殷晨波,冯浩,等.改进粒子群算法应用于挖掘机铲斗位置控制[J].机械设计与制造,2020(2):173-176.
WENG W W,YIN C B,FENG H,et al.Position control of hydraulic excavator system using an improved PSO algorithm[J].Machinery Design and Manufacture,2020(2):173-176.
[5] WANG X,CHEN M.Application of mathematical model based on optimization theory and particle swarm algorithm in radar station layout optimization[J].Journal of Physics:Conference Series,2021,1848(1):012087.
[6] 杨超杰,裴以建,刘朋.改进粒子群算法的三维空间路径规划研究[J].计算机工程与应用,2019,55(11):117-122.
YANG C J,PEI Y J,LIU P.Research on three-dimensional space path planning based on improved particle swarm optimization algorithm[J].Computer Engineering and Applications,2019,55(11):117-122.
[7] 张新明,康强,王霞,等.交叉反向学习和同粒社会学习的粒子群优化算法[J].计算机应用,2017,37(11):3194-3200.
ZHANG X M,KANG Q,WANG X,et al.Particle swam optimization algorithm with cross opposition learning and particle-based social learning[J].Journal of Computer Application,2017,37(11):3194-3200.
[8] 李龙澍,张效见.一种新的自适应惯性权重混沌PSO算法[J].计算机工程与应用,2018,54(9):139-144.
LI L S,ZHANG X J.New chaos particle swarm optimization based on adaptive inertia weight[J].Computer Engineering and Applications,2018,54(9):139-144.
[9] 仝秋娟,赵岂,李萌.基于自适应动态改变的粒子群优化算法[J].微电子学与计算机,2019,36(2):6-10.
TONG Q J,ZHAO Q,LI M.Particle swarm optimization algorithm based on adaptive dynamic change[J].Microelectronics and Computer,2019,36(2):6-10.
[10] 袁小平,蒋硕.基于分层自主学习的改进粒子群优化算法[J].计算机应用,2019,39(1):148-153.
YUAN X P,JIANG S.Improved particle swarm optimization algorithm based on hierarchical autonomous learning[J].Journal of Computer Application,2019,39(1):148-153.
[11] YU H,GAO Y,WANG L,et al.A hybrid particle swarm optimization algorithm enhanced with nonlinear inertial weight and gaussian mutation for job shop scheduling problems[J].Mathematics,2020,8(8):1-7.
[12] FU X,SUN Y,WANG H,et al.Task scheduling of cloud computing based on hybrid particle swarm algorithm and genetic algorithm[J].Cluster Computing,2021,23(2):1137-1147.
[13] 赵玉强,钱谦.一类带学习与竞技策略的混沌天牛群搜索算法[J].通信技术,2018,51(11):2582-2588.
ZHAO Y Q,QIAN Q.Novel chaos beetle swarm searching algorithm with learning and competitive strategies[J].Communications Technology,2018,51(11):2582-2588.
[14] NICKABADI A,EBADZADEH M M,SAFABAKHSH R.A novel particle swarm optimization algorithm with adaptive inertia weight[J].Applied Soft Computing,2011,11(4):3658-3670.
[15] 田东平,赵天绪.基于Sigmoid惯性权值的自适应粒子群优化算法[J].计算机应用,2008,28(12):3058-3061.
TIAN D P,ZHAO T X.Adaptive particle swarm optimization algorithm based on Sigmoid inertia weight[J].Computer Applications,2008,28(12):3058-3061.
[16] HUANG Q,TANG J,LI H,et al.Reactive power optimization for distribution network based on improved bacterial chemotaxis particle swarm optimization[C]//2019 12th International Symposium on Computational Intelligence and Design(ISCID),Hangzhou,China,2019:189-191.
[17] 王生亮,刘根友.一种非线性动态自适应惯性权重PSO算法[J].计算机仿真,2021,38(4):249-253.
WANG S L,LIU G Y.A nonlinear dynamic adaptive inertial weight particle swarm optimization[J].Computer Simu-
lation,2021,38(4):249-253.
[18] ZHANG X,WANG X,KANG Q,et al.Differential mutation and novel social learning particle swarm optimization algorithm[J].Information Sciences,2019,480:109-129.
[19] 莫思敏,曾建潮,谢丽萍.扩展的微粒群算法[J].控制理论与应用,2012,29(6):811-816.
MO S M,ZENG J C,XIE L P.Extended particle-swarm optimization algorithm[J].Control Theory and Applications,2012,29(6):811-816.
[20] 姚成玉,赵哲谕,陈东宁,等.有向动态拓扑混合作用力微粒群优化算法及可靠性应用[J].机械工程学报,2017,53(10):166-179.
YAO C Y,ZHAO Z Y,CHEN D N,et al.Unidirectional dynamic topology hybrid force PSO algorithm and its applications in reliability optimization[J].Journal of Mechani-
cal Engineering,2017,53(10):166-179.
[21] 蔡欢欢.基于学习与竞争的改进PSO算法研究[J].西南师范大学学报(自然科学版),2019,44(5):115-120.
CAI H H.Research on improved PSO algorithm based on learning and competition[J].Journal of Southwest China Normal University(Natural Science Edition),2019,44(5):115-120.
[22] 郑明,卓慕瑰,张树功.基于混合并行遗传算法和阈值限定法的基因调控网络构建[J].吉林大学学报(工学版),2017,47(2):624-631.
ZHENG M,ZHUO M G,ZHANG S G.Reconstruction for gene regulatory network based on hybrid parallel genetic algorithm and threshold value method[J].Journal of Jilin University(Engineering and Technology Edition),2017,47(2):624-631.