Robust Least Squares Twin Support Vector Machine and Its Sparse Algorithm
JIN Qifan, CHEN Li, XU Mingliang, JIANG Xiaoheng
1.College of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
2.Institute of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, China
JIN Qifan, CHEN Li, XU Mingliang, JIANG Xiaoheng. Robust Least Squares Twin Support Vector Machine and Its Sparse Algorithm[J]. Computer Engineering and Applications, 2022, 58(18): 78-89.
[1] CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
[2] KHEMCHANDANI R,CHANDRA S.Twin support vector machines for pattern classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(5):905-910.
[3] ARUN KUMAR M,GOPAL M.Least squares twin support vector machines for pattern classification[J].Expert Systems with Applications,2009,36(4):7535-7543.
[4] CHEN J,JI G R.Weighted least squares twin support vector machines for pattern classification[C]//The 2nd International Conference on Computer and Automation Engineering.Singapore:IEEE,2010:242-246.
[5] 储茂祥,王安娜,巩荣芬.一种改进的最小二乘孪生支持向量机分类算法[J].电子学报,2014,42(5):998-1003.
CHU M X,WANG A N,GONG R F.Improvement on least squares twin support vector machine for pattern classification[J].Acta Electronice Sinica,2014,42 (5):998-1003.
[6] 黄贤源,翟国君,隋立芬,等.LS-SVM 算法中优化训练样本对测深异常值剔除的影响[J].测绘学报,2011,40(1):22-27.
HUANG X Y,ZHAI G J,SUI L F,et al.The influence of optimized train samples on elimination of sounding outliers in the LS-SVM arithmetic[J].Acta Geodaeticaet Cartographica Sinica,2011,40(1):22-27.
[7] 郭战坤,金永威,梁小珍,等.基于异常值检测的港口集装箱吞吐量预测模型[J].数学的实践与认识,2019,49(17):26-34.
GUO Z K,JIN Y W,LIANG X Z,et al.Prediction model of port container throughput based on outlier detection[J].Mathematics in Practice and Theory,2019,49(17):26-34.
[8] SHEN X T,TSENG G C,ZHANG X G,et al.On ψ-learning[J].Journal of the American Statistical Association,2003,98(463):724-734.
[9] WU Y C,LIU Y F.Robust truncated hinge loss support vector machines[J].Journal of the American Statistical Association,2007,102(479):974-983.
[10] WANG K,ZHONG P.Robust non-convex least squares loss function for regression with outliers[J].Knowledge-Based Systems,2014,71:290-302.
[11] YANG X,TAN L,HE L.A robust least squares support vector machine for regression and classification with noise[J].Neurocomputing,2014,140:41-52.
[12] 安亚利,周水生,陈丽,等.鲁棒支持向量机及其稀疏算法[J].西安电子科技大学学报,2019,46(1):64-72.
AN Y L,ZHOU S S,CHEN L,et al.Robust support vector machines and their sparse algorithms[J].Journal of Xidian University,2019,46(1):64-72.
[13] SUYKENS J A,LUKAS L,VANDEWALLE J.Sparse approximation using least squares support vector machines[C]//The 2000 IEEE International Symposium on Circuits and Systems,2000:757-760.
[14] ZENG X Y,CHEN X W.SMO-based pruning methods for sparse least squares support vector machines[J].IEEE Transactions on Neural Networks,2005,16(6):1541-1546.
[15] LI Y,LIN C,ZHANG W.Improved sparse least-squares support vector machine classifiers[J].Neurocomputing,2006,69(13/15):1655-1658.
[16] 刘小茂,孔波,高俊斌,等.一种稀疏最小二乘支持向量分类机[J].模式识别与人工智能,2007,20(5):681-687.
LIU X M,KONG B,GAO J B,et al.A sparse least support vector machine classifier[J].Intelligence Pattern Recognition and Artificial,2007,20(5):681-687.
[17] JIAO L,BO L,WANG L.Fast sparse approximation for least squares support vector machine[J].IEEE Transactions on Neural Networks,2007,18(3):685-697.
[18] DE BRABANTER K,DE BRABANTER J,SUYKENS J,et al.Optimized fixed-size kernel models for large data sets[J].Computational Statistics and Data Analysis,2010,54(6):1484-1504.
[19] ZHOU S S.Sparse LSSVM in primal using Cholesky factorization for large scale problems[J].IEEE Transactions on Neural Networks and Learning Systems,2016,27(4):783-795.
[20] SHALEV-SHWARTZ S,BEN-DAVID S.Understanding machine learning:from theory to algorithms[M].[S.l.]:Cambridge University Press,2014.
[21] SCH?LKOPF B,HERBRICH R,SMOLA A J.A generalized representer theorem[C]//International Conference on Computational Learning Theory.Berlin,Heidelberg:Springer,2001:416-426.
[22] YUILLE A,RANGARAJAN A.The concave-convex procedure[J].Neural Computation,2003,15(4):915-936.
[23] GEMAN D,YANG C D.Nonlinear image recovery with half-quadratic regularization[J].IEEE Transactions on Image Processing,1995,4(7):932-946.
[24] NIKOLOVA M,NG M K.Analysis of half-quadratic minimization methods for signal and image recovery[J].SIAM Journal on Scientific Computing,2005,27(3):937-966.
[25] HE B,YUAN X.On the [O(1/n)] convergence rate of the Douglas-Rachford alternating direction method[J].SIAM Journal on Numerical Analysis,2012,50(2):700-709.
[26] 业巧林,闫贺.基于最小二乘的孪生有界支持向量机分类算法[J].华中科技大学学报(自然科学版),2018,46(3):30-35.
YE Q L,YAN H.Least squares based twin bounded support vector machine classification algorithm[J].Journal of Huazhong University of Science & Technology(Natural Science Edition),2018,46(3):30-35.
[27] CHEN L,ZHOU S S.Sparse algorithm for robust LSSVM in primal space[J].Neurocomputing,2018,275:2880-2891.