Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (15): 1-17.DOI: 10.3778/j.issn.1002-8331.2112-0176
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHANG Yan, ZHANG Minglu, LYU Xiaoling, GUO Ce, JIANG Zhihong
Online:
2022-08-01
Published:
2022-08-01
张艳,张明路,吕晓玲,郭策,蒋志宏
ZHANG Yan, ZHANG Minglu, LYU Xiaoling, GUO Ce, JIANG Zhihong. Review of Research on Small Target Detection Based on Deep Learning[J]. Computer Engineering and Applications, 2022, 58(15): 1-17.
张艳, 张明路, 吕晓玲, 郭策, 蒋志宏. 深度学习小目标检测算法研究综述[J]. 计算机工程与应用, 2022, 58(15): 1-17.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2112-0176
[1] 胡俊,顾晶晶,王秋红.基于遥感图像的多模态小目标检测[J].图学学报,2022,43(2):197-204. HU J,GU J J,WANG Q H.Multimodal small target detection based on remote sensing image[J].Journal of Graphics,2022,43(2):197-204. [2] 陶磊,洪韬,钞旭.基于YOLOv3的无人机识别与定位追踪[J].工程科学学报,2020,42(4):463-468. TAO L,HONG T,CHAO X.Drone identification and location tracking based on YOLOv3[J].Chinese Journal of Engineering,2020,42(4):463-468. [3] 曹俊豪.基于深度学习的行人检测算法研究[D].北京:北京邮电大学,2019. CAO J H.Study on pedestrian detection algorithm based on deep learning[D].Beijing:Beijing University of Posts and Telecommunications,2019. [4] 孙一飞,武继刚,张欣鹏.面向眼底图像小目标检测的无监督学习方法[J].计算机工程与科学,2019,41(11):2000-2006. SUN Y F,WU J G,ZHANG X P.Unsupervised learning for small objects detection in retinal images[J].Computer Engineering and Science,2019,41(11):2000-2006. [5] 姜健涛.基于深度学习的人脸识别技术研究[D].哈尔滨:哈尔滨工业大学,2019. JIANG J T.Research on face recognition technology based on deep learning[D].Harbin:Harbin Institute of Technology,2019. [6] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [7] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1440-1448. [8] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards realtime object detection with region proposal networks[J].Advances in Neural Information Processing Systems,2015,28:91-99. [9] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [10] KIM K H,HONG S,ROH B,et al.Pvanet:deep but lightweight neural networks for real-time object detection[J]. arXiv:1608.08021,2016. [11] GIDARIS S,KOMODAKIS N.Object detection via a multi-region and semantic segmentation-aware CNN model[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1134-1142. [12] HE K,GKIOXARI G,DOLLáR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2961-2969. [13] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788. [14] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:7263-7271. [15] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018. [16] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [17] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37. [18] FU C Y,LIU W,RANGA A,et al.DSSD:deconvolutional single shot detector[J].arXiv:1701.06659,2017. [19] SHEN Z,LIU Z,LI J,et al.DSOD:learning deeply supervised object detectors from scratch[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:1919-1927. [20] JEONG J,PARK H,KWAK N.Enhancement of SSD by concatenating feature maps for object detection[J].arXiv:1705.09587,2017. [21] LI Z,ZHOU F.FSSD:feature fusion single shot multi box detector[J].arXiv:1712.00960,2017. [22] QI L,LI B,CHEN L,et al.Ship target detection algorithm based on improved faster R-CNN[J].Electronics,2019,8(9):959. [23] YIN G,YU M,WANG M,et al.Research on highway vehicle detection based on faster R-CNN and domain adaptation[J].Applied Intelligence,2022,52:3483-3498. [24] WU Q,FENG D,CAO C,et al.Improved mask R-CNN for aircraft detection in remote sensing images[J].Sensors,2021,21(8):2618. [25] HU J,SHI C J R,ZHANG J.Saliency-based YOLO for single target detection[J].Knowledge and Information Systems,2021,63(3):717-732. [26] WANG G,DING H,YANG Z,et al.TRC-YOLO:a real-time detection method for lightweight targets based on mobile devices[J].IET Computer Vision,2021,16(2):126-142. [27] GAI R,CHEN N,YUAN H.A detection algorithm for cherry fruits based on the improved YOLO-v4 model[J].Neural Computing and Applications,2021:1-12. [28] WANG X,HUA X,XIAO F,et al.Multi-object detection in traffic scenes based on improved SSD[J].Electronics,2018,7(11):302. [29] JIA D,ZHOU J,ZHANG C.Detection of cervical cells based on improved SSD network[J].Multimedia Tools and Applications,2021:1-17. [30] BAI D,SUN Y,TAO B,et al.Improved single shot multibox detector target detection method based on deep feature fusion[J].Concurrency and Computation:Practice and Experience,2021. [31] ZHOU Z,SHI Z,GUO Y,et al.Object detection in 20 years:a survey[J].arXiv:1905.05055,2019. [32] TONG K,WU Y,ZHOU F.Recent advances in small object detection based on deep learning:a review[J].Image and Vision Computing,2020,97:103910. [33] CHEN G,WANG H,CHEN K,et al.A survey of the four pillars for small object detection:multiscale representation,contextual information,super-resolution,and region proposal[J].IEEE Transactions on Systems,Man,and Cyber-Netics:Systems,2020,52(2):936-953. [34] LIU Y,SUN P,WERGELES N,et al.A survey and performance evaluation of deep learning methods for small object detection[J].Expert Systems with Applications,2021,172:114602. [35] 刘晓楠,王正平,贺云涛,等.基于深度学习的小目标检测研究综述[J].战术导弹技术,2019(1):100-107. LIU X N,WANG Z P,HE Y T,et al.Research on small target detection based on deep learning[J].Tactical Missile Technology,2019(1):100-107. [36] 刘洋,战荫伟.基于深度学习的小目标检测算法综述[J].计算机工程与应用,2021,57(2):37-48. LIU Y,ZHAN Y W.Survey of small object detection algorithms based on deep learning[J].Computer Engineering and Applications,2021,57(2):37-48. [37] 李红光,于若男,丁文锐.基于深度学习的小目标检测研究进展[J].航空学报,2021,42(7):107-125. LI H G,YU R N,DING W R.Research development of small object traching based on deep learning[J].Acta Aeronautica et Astronautica Sinica,2021,42(7):107-125. [38] 刘颖,刘红燕,范九伦,等.基于深度学习的小目标检测研究与应用综述[J].电子学报,2020,48(3):590-601. LIU Y,LIU H Y,FAN J L,et al.A survey of research and application of small object detection based on deep learning[J].Acta Electronica Sinica,2020,48(3):590-601. [39] 刘洪江,王懋,刘丽华,等.基于深度学习的小目标检测综述[J].计算机工程与科学,2021,43(8):1429-1442. LIU H J,WANG M,LIU L H,et al.A survery of small target detection based on deep learning[J].Computer Engineering and Science,2021,43(8):1429-1442. [40] 李科岑,王晓强,林浩,等.深度学习中的单阶段小目标检测方法综述[J].计算机科学与探索,2022,16(1):41-58. LI K C,WANG X Q,LIN H,et al.Survey of one-stage small object detection methods in deep learning[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):41-58. [41] 高新波,莫梦竟成,汪海涛,等.小目标检测研究进展[J].数据采集与处理,2021,36(3):391-417. GAO X B,MO M J C,WANG H T,et al.Recent advances in small object detection[J].Journal Data Acquisition and Processing,2021,36(3):391-417. [42] INOUE H.Data augmentation by pairing samples for images classification[J].arXiv:1801.02929,2018. [43] ZHANG H,CISSE M,DAUPHIN Y N,et al.Mixup:beyond em pirical risk minimization[J].arXiv:1710. 09412,2017. [44] DEVRIES T,TAYLOR G W.Improved regularization of convolu tional neural networks with cutout[J].arXiv:1708.04552,2017. [45] YUN S,HAN D,OH S J,et al.Cutmix:regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6023-6032. [46] HARRIS E,MARCU A,PAINTER M,et al.Fmix:enhancing mixed sample data augmentation[J].arXiv:2002.12047,2020. [47] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[C]//Advances in Neural Information Processing Systems,2014:2672-2680. [48] CUBUK E D,ZOPH B,MANE D,et al.Autoaugment:learning augmentation policies from data[J].arXiv:1805. 09501,2018. [49] CUBUK E D,ZOPH B,SHLENS J,et al.Randaugment:practical automated data augmentation with a reduced search space[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2020:702-703. [50] LIM S,KIM I,KIM T,et al.Fast autoaugment[C]//Advances in Neural Information Processing Systems,2019:6665-6675. [51] HO D,LIANG E,CHEN X,et al.Population based augmentation:efficient learning of augmentation policy schedules[C]//International Conference on Machine Learning,2019:2731-2741. [52] MüLLER S G,HUTTER F.TrivialAugment:tuning-free yet state-of-the-art data augmentation[J].arXiv:2103. 10158,2021. [53] KISANTAL M,WOJNA Z,MURAWSKI J,et al.Aug mentation for small object detection[J].arXiv:1902. 07296,2019. [54] CHEN C,ZHANG Y,LV Q,et al.RRNet:a hybrid detector for object detection in drone-captured images[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops,2019. [55] CHEN Y,ZHANG P,LI Z,et al.Stitcher:feedback-driven data provider for object detection[J].arXiv:2004.12432,2020. [56] ZOPH B,CUBUK E D,GHIASI G,et al.Learning data augmentation strategies for object detection[J].arXiv:1906.11172,2019. [57] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125. [58] GUO C,FAN B,ZHANG Q,et al.Augfpn:improving multi-scale feature learning for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:12595-12604. [59] GHIASI G,LIN T Y,LE Q V.Nas-fpn:learning scalable feature pyramid architecture for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:7036-7045. [60] LUO Y,CAO X,ZHANG J,et al.CE-FPN:enhancing channel information for object detection[J].arXiv:2103. 10643,2021. [61] KIM S W,KOOK H K,SUN J Y,et al.Parallel feature pyramid network for object detection[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:234-250. [62] ZHAO B J,ZHAO B Y,TANG L B,et al.Multi-scale object detection by top-down and bottom-up feature pyramid network[J].Journal of Systems Engineering and Electronics,2019,30(1):1-12. [63] LI Z,ZHOU F.FSSD:feature fusion single shot multibox detector[J].arXiv:1712.00960,2017. [64] FU C Y,LIU W,RANGA A,et al.DSSD:deconvolutional single shot detector[J].arXiv:1701.06659,2017. [65] 李文涛,彭力.多尺度通道注意力融合网络的小目标检测算法[J].计算机科学与探索,2021,15(12):2390-2400. LI W T,PENG L.Small objects detection algorithm with multi-scale channel attention fusion network[J].Journal of Frontiers of Computer Science and Technology,2021,15(12):2390-2400. [66] 陈欣,万敏杰,马超,等.采用多尺度特征融合SSD的遥感图像小目标检测[J].光学精密工程,2021,29(11):2672-2682. CHEN X,WAN M J,MA C,et al.Recognition of small targets in remote sensing image using multi-scale feature fusion-based shot multi-box detector[J].Optics and Precision Engineering,2021,29(11):2672-2682. [67] 李晖晖,周康鹏,韩太初.基于CReLU和FPN改进的SSD舰船目标检测[J].仪器仪表学报,2020,41(4):183-190. LI H H,ZHOU K P,HAN T C.Ship object detection based on SSD improved with CReLU and FPN[J].Chinese Journal of Scientific Instrument,2020,41(4):183-190. [68] 赵彤,刘洁瑜,沈强.一种改进的多门控特征金字塔网络[J].光学学报,2019,39(8):235-244. ZHAO T,LIU J Y,SHEN Q.An improved multi-gated feature pyramid network[J].Acta Optica Sinica,2019,39(8):235-244. [69] 李宝奇,贺昱曜,强伟,等.基于并行附加特征提取网络的SSD地面小目标检测模型[J].电子学报,2020,48(1):84-91. LI B Q,HE Y Y,QIANG W,et al.SSD with parallel additional feature extraction network for ground small target detection[J].Acta Electronica Sinica,2020,48(1):84-91. [70] 梁延禹,李金宝.多尺度非局部注意力网络的小目标检测算法[J].计算机科学与探索,2020,14(10):1744-1753. LIANG Y Y,LI J B.Small objects detection method based on multi-scale non-local attention network[J].Journal of Frontiers of Computer Science and Technology,2020,14(10):1744-1753. [71] MENG J,JIANG P,WANG J,et al.A mobileNet-SSD model with FPN for waste detection[J].Journal of Electrical Engineering & Technology,2021:1-7. [72] QU J,SU C,ZHANG Z,et al.Dilated convolution and feature fusion SSD network for small object detection in remote sensing images[J].IEEE Access,2020,8:82832-82843. [73] REN K,HUANG L,FAN C,et al.Real-time traffic sign detection network using DS-DetNet and lite fusion FPN[J].Journal of Real-Time Image Processing,2021,18:2181-2191. [74] KONG T,SUN F,TAN C,et al.Deep feature pyramid recon-figuration for object detection[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:169-185. [75] ZHANG Z,QIAO S,XIE C,et al.Single-shot object detection with enriched semantics[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:5813-5821. [76] XUE Z,CHEN W,LI J.Enhancement and fusion of multi-scale feature maps for small object detection[C]//2020 39th Chinese Control Conference(CCC),2020:7212-7217. [77] NAYAN A A,SAHA J,MOZUMDER A N,et al.Real time detection of small objects[J].International Journal of Innovative Technology and Exploring Engineering,2020,9(5):837. [78] DENG C,WANG M,LIU L,et al.Extended feature pyramid network for small object detection[J].arXiv:2003. 07021,2020. [79] QI G,ZHANG Y,WANG K,et al.Small object detection method based on adaptive spatial parallel convolution and fast multi-scale fusion[J].Remote Sensing,2022,14(2):420. [80] ZHU C,TAO R,LUU K,et al.Seeing small faces from robust anchor’s perspective[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:5127-5136. [81] WANG J,CHEN K,YANG S,et al.Region proposal by guided anchoring[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:2965-2974. [82] LI Y,YU Y,LI Z,et al.Pixel-anchor:a fast oriented scene text detector with combined networks[J].arXiv:1811.07432,2018. [83] 王毓玮,史国友,林佳木.基于改进Faster R-CNN的SAR舰船图像检测[J].船舶工程,2021,43(8):29-33. WANG Y W,SHI G Y,LIN J M.SAR ship image detection based on improved Faster R-CNN[J].Ship Engineering,2021,43(8):29-33. [84] 周慧,严凤龙,褚娜,等.一种改进复杂场景下小目标检测模型的方法[J].计算机工程与应用,2022,58(11):187-192. ZHOU H,YAN F L,CHU N,et al.Approach to improve detection model for small object in complex scenes[J].Computer Engineering and Applications,2022,58(11):187-192. [85] LAW H,DENG J.Cornernet:detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:734-750. [86] DUAN K,BAI S,XIE L,et al.Centernet:keypoint triplets for object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2019:6569-6578. [87] DONG Z,LI G,LIAO Y,et al.CentripetalNet:pursuing high-quality keypoint pairs for object detection[J].arXiv:2003.09119,2020. [88] ZHANG S,CHI C,YAO Y,et al.Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020. [89] CAI Z,VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:6154-6162. [90] 汪跃东.基于Cascade-RCNN的密集场景行人检测算法研究[D].重庆:重庆理工大学,2021. WANG Y D.Pedestrian detection algorithm in dense scenes based on Cascade-RCNN[D].Chongqing:Chongqing University of Technology,2021. [91] HAN X.Modified cascade RCNN based on contextual information for vehicle detection[J].Sensing and Imaging,2021,22(1):1-19. [92] SHI X,LI Z,YU H.Adaptive threshold cascade faster RCNN for domain adaptive object detection[J].Multimedia Tools and Applications,2021,80:25291-25308. [93] 刘艳萍,刘甜.改进的Cascade RCNN行人检测算法研究[J].计算机工程与应用,2022,58(4):229-236. LIU Y P,LIU T.Improved Cascade RCNN pedestrian detection algorithm research[J].Computer Engineering and Applications,2022,58(4):229-236. [94] 李松江,吴宁,王鹏,等.基于改进Cascade RCNN的车辆目标检测方法[J].计算机工程与应用,2021,57(5):123-130. LI S J,WU N,WANG P,et al.Vehicle target detection method based on improved Cascade RCNN[J].Computer Engineering and Applications,2021,57(5):123-130. [95] ZHANG W,LI Q,WU Q M,et al.A novel ship target detection algorithm based on error self-adjustment extreme learning machine and cascade classifier[J].Cognitive Computation,2019,11(1):110-124. [96] HE K,ZHANG X,REN S.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [97] RASHWAN A,AGARWAL R,KALRA A,et al.MatrixNets:a new scale and aspect ratio aware architecture for object detection[J].arXiv:2001.03194,2020. [98] LIANG B,WU S,XU K,et al.Butterfly detection and clas-sification based on integrated YOLO algorithm[C]//International Conference on Genetic and Evolutionary Computing.Singapore:Springer,2019:500-512. [99] 高晔,郭松宜,厍向阳.基于残差收缩网络的遥感图像目标检测算法[J/OL].计算机工程与应用:1-9[2021-12-04].http://kns.cnki.net/kcms/detail/11.2127.TP.20211116.2043. 014.html. GAO Y,GUO S Y,SHE X Y.Remote sensing image target detection algorithm based on residual shrinkage network[J/OL].Computer Engineering and Applications:1-9[2021-12-04].http://kns.cnki.net/kcms/detail/11.2127.TP. 20211116.2043.014.html. [100] YUAN P,LIN S,CUI C,et al.HS-ResNet:hierarchical-split block on convolutional neural network[J].arXiv:2010.07621,2020. [101] BAI Y,ZHANG Y,DING M.SOD-MTGAN:small object detection via multi-task generative adversarial network[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:206-221. [102] WANG H,WANG J,BAI K,et al.Centered multi-task generative adversarial network for small object detection[J].Sensors,2021,21(15):5194. [103] COURTRAI L,PHAM M T,LEFèVRE S.Small object detection in remote sensing images based on super-resolution with auxiliary generative adversarial networks[J].Remote Sensing,2020,12(19):3152. [104] ZHAO B,WANG C,FU Q,et al.A novel pattern for infrared small target detection with generative adversarial network[J].IEEE Transactions on Geoscience and Remote Sensing,2020,59(5):4481-4492. [105] LI J,LIANG X,WEI Y,et al.Perceptual generative adversarial networks for small object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1222-1230. [106] RABBI J,RAY N,SCHUBERT M,et al.Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network[J].Remote Sensing,2020,12(9):1432. [107] JIANG K,WANG Z,YI P,et al.Edge-enhanced GAN for remote sensing image superresolution[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(8):5799-5812. [108] WANG X,YU K,WU S,et al.Esrgan:enhanced superresolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision(ECCV) Workshops,2018. [109] YU B,TAO D.Anchor cascade for efficient face detection[J].IEEE Transactions on Image Processing,2018,28(5):2490-2501. [110] ZHU Y,ZHAO C,WANG J,et al.Couplenet:coupling global structure with local parts for object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:4126-4134. [111] ZHU Y,ZHAO C,GUO H,et al.Attention couplenet:fully convolutional attention coupling network for object detection[J].IEEE Transactions on Image Processing,2018,28(1):113-126. [112] QIAO S,CHEN L C,YUILLE A.DetectoRS:detecting objects with recursive feature pyramid and switchable atrous convolution[J].arXiv:2006.02334,2020. [113] 孔慧芳,冯超,胡杰.基于特征上下文编码的实时语义分割网络[J].合肥工业大学学报(自然科学版),2021,44(12):1621-1626. KONG H F,FENG C,HU J.Real-time semantic segmentation network based on feature context encoding[J].Journal of Hefei University of Technology(Natural Science),2021,44(12):1621-1626. [114] 张馨月,降爱莲.融合特征增强和自注意力的SSD小目标检测算法[J].计算机工程与应用,2022,58(5):247-255. ZHANG X Y,JIANG A L.SSD small target detection algorithm combining feature enhancement and self-attention[J].Computer Engineering and Applications,2022,58(5):247-255. [115] YU C,WANG J,GAO C,et al.Context prior for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:12416-12425. [116] LIM J S,ASTRID M,YOON H J,et al.Small object detection using context and attention[C]//2021 International Conference on Artificial Intelligence in Information and Communication(ICAIIC),2021:181-186. [117] RAMACHANDRAN P,ZOPH B,LE Q V.Searching for activation functions[J].arXiv:1710.05941,2017. [118] LIN G,SHEN W.Research on convolutional neural network based on improved Relu piecewise activation function[J].Procedia Computer Science,2018,131:977-984. [119] 徐浩,杨德刚,蒋倩倩,等.基于SSD的轻量级车辆检测网络改进[J].计算机工程与应用,2022,58(12):209-217. XU H,YANG D G,JIANG Q Q,et al.Improvement of light weight vehicle detection network based on SSD[J].Computer Engineering and Applications,2022,58(12):209-217. [120] 周非,李阳,范馨月.图像分类卷积神经网络的反馈损失计算方法改进[J].小型微型计算机系统,2019,40(7):1532-1537. ZHOU F,LI Y,FAN X Y.Improved loss calculation algrithm for convolutional neural networks in image classification application[J].Journal of Chinese Computer Systems,2019,40(7):1532-1537. [121] HU X,XU X,XIAO Y,et al.SINet:a scale-insensitive convolutional neural network for fast vehicle detection[J].IEEE Transactions on Intelligent Transportation Systems,2018,20(3):1010-1019. [122] 刘淼,王晶,董桂官,等.基于改进池化层的弱标记声音事件检测[J].信号处理,2021,37(10):1907-1913. LIU M,WANG J,DONG G G,et al.Weakly labeled sound event detection based on improved pooling layer[J].Journal of Signal Processing,2021,37(10):1907-1913. [123] LU Y,JAVIDI T,LAZEBNIK S.Adaptive object detection using adjacency and zoom prediction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2351-2359. [124] 刘安旭,黎向锋,刘晋川,等.改进卷积空间传播网络的单目图像深度估计[J].电子测量技术,2021,44(23):78-85. LIU A X,LI X F,LIU J C,et al.Monocular image depth estimation of improved convolutional spatial propagation network[J].Electronic Measurement Technology,2021,44(23):78-85. [125] IANDOLA F N,HAN S,MOSKEWICZ M W,et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and<0.5?MB model size[J].arXiv:1602. 07360,2016. [126] HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [127] SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4510-4520. [128] HOWARD A,SANDLER M,CHU G,et al.Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:1314-1324. [129] ZHANG X,ZHOU X,LIN M,et al.Shufflenet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:6848-6856. [130] MA N,ZHANG X,ZHENG H T,et al.Shufflenet v2:practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:116-131. [131] ZHANG Y,BI S,DONG M,et al.The implementation of CNN-based object detector on ARM embedded platforms[C]//2018 IEEE 16th International Conference on Dependable,Autonomic and Secure Computing,16th International Conference on Pervasive Intelligence and Computing,4th International Conference on Big Data Intelligence and Computing and Cyber Science and Tech-nology Congress(DASC/PiCom/DataCom/CyberSciTech),2018:379-382. [132] WONG A,FAMUORI M,SHAFIEE M J,et al.Yolo nano:a highly compact you only look once convolutional neural network for object detection[C]//2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition(EMC2-NIPS),2019:22-25. [133] CHOI J,CHUN D,KIM H,et al.Gaussian yolov3:an accurate and fast object detector using localization uncertainty for autonomous driving[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:502-511. [134] QIN Z,LI Z,ZHANG Z,et al.ThunderNet:towards real-time generic object detection on mobile devices[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6718-6727. [135] WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2020:390-391. [136] CHEN C,LIU M,MENG X,et al.Refinedetlite:a lightweight one-stage object detection framework for cpu-only devices[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2020:700-701. [137] XIONG Y,LIU H,GUPTA S,et al.Mobiledets:searching for object detection architectures for mobile accelerators[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:3825-3834. [138] HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [139] ZHANG X,ZHOU X,LIN M,et al.Shufflenet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:6848-6856. [140] XIONG Y,LIU H,GUPTA S,et al.MobileDets:searching for object detection architectures for mobile accelerators[J].arXiv:2004.14525,2020. [141] 景丽婷.基于多尺度超分辨率的小目标检测算法研究[D].厦门:厦门大学,2019. JING L T.Research on small object detection algorithm based on multi-scale super-resolution[D].Xiamen:Xiamen University,2019. [142] NOH J,BAE W,LEE W,et al.Better to follow,follow to be better:towards precise supervision of feature super-resolution for small object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:9725-9734. [143] LIU Z,GAO G,SUN L,et al.HRDNet:high-resolution detection network for small objects[C]//2021 IEEE International Conference on Multimedia and Expo(ICME),2021:1-6. [144] 吴湘宁,贺鹏,邓中港,等.一种基于注意力机制的小目标检测深度学习模型[J].计算机工程与科学,2021,43(1):95-104. WU X N,HE P,DENG Z G,et al.A deep learning model for small object detection based on attention mechanism[J].Computer Engineering and Science,2021,43(1):95-104. [145] ZHANG Y,CHEN Y,HUANG C,et al.Object detection network based on feature fusion and attention mechanism[J].Future Internet,2019,11(1):9. [146] LV Z,WANG W,XU Z,et al.Fine-grained object detection method using attention mechanism and its application in coal-gangue detection[J].Applied Soft Computing,2021,113:107891. |
[1] | GAO Guangshang. Survey on Attention Mechanisms in Deep Learning Recommendation Models [J]. Computer Engineering and Applications, 2022, 58(9): 9-18. |
[2] | JI Meng, HE Qinglong. AdaSVRG: Accelerating SVRG by Adaptive Learning Rate [J]. Computer Engineering and Applications, 2022, 58(9): 83-90. |
[3] | LUO Xianglong, GUO Huang, LIAO Cong, HAN Jing, WANG Lixin. Spatiotemporal Short-Term Traffic Flow Prediction Based on Broad Learning System [J]. Computer Engineering and Applications, 2022, 58(9): 181-186. |
[4] | Alim Samat, Sirajahmat Ruzmamat, Maihefureti, Aishan Wumaier, Wushuer Silamu, Turgun Ebrayim. Research on Sentence Length Sensitivity in Neural Network Machine Translation [J]. Computer Engineering and Applications, 2022, 58(9): 195-200. |
[5] | CHEN Yixiao, Alifu·Kuerban, LIN Wenlong, YUAN Xu. CA-YOLOv5 for Crowded Pedestrian Detection [J]. Computer Engineering and Applications, 2022, 58(9): 238-245. |
[6] | FANG Yiqiu, LU Zhuang, GE Junwei. Forecasting Stock Prices with Combined RMSE Loss LSTM-CNN Model [J]. Computer Engineering and Applications, 2022, 58(9): 294-302. |
[7] | SHI Jie, YUAN Chenxiang, DING Fei, KONG Weixiang. Survey of Building Target Detection in SAR Images [J]. Computer Engineering and Applications, 2022, 58(8): 58-66. |
[8] | XIONG Fengguang, ZHANG Xin, HAN Xie, KUANG Liqun, LIU Huanle, JIA Jionghao. Research on Improved Semantic Segmentation of Remote Sensing [J]. Computer Engineering and Applications, 2022, 58(8): 185-190. |
[9] | YANG Jinfan, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, LI Kecen, GAO Jing. Review of One-Stage Vehicle Detection Algorithms Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(7): 55-67. |
[10] | WANG Bin, LI Xin. Research on Multi-Source Domain Adaptive Algorithm Integrating Dynamic Residuals [J]. Computer Engineering and Applications, 2022, 58(7): 162-166. |
[11] | TAN Shuqiu, TANG Guofang, TU Yuanya, ZHANG Jianxun, GE Panjie. Classroom Monitoring Students Abnormal Behavior Detection System [J]. Computer Engineering and Applications, 2022, 58(7): 176-184. |
[12] | ZHANG Meiyu, LIU Yuehui, HOU Xianghui, QIN Xujia. Automatic Coloring Method for Gray Image Based on Convolutional Network [J]. Computer Engineering and Applications, 2022, 58(7): 229-236. |
[13] | ZHANG Zhuangzhuang, QU Licheng, LI Xiang, ZHANG Minghao, LI Zhaolu. Traffic Flow Prediction with Missing Data Based on Spatial-Temporal Convolutional Neural Networks [J]. Computer Engineering and Applications, 2022, 58(7): 259-265. |
[14] | XU Jie, ZHU Yukun, XING Chunxiao. Research on Financial Trading Algorithm Based on Deep Reinforcement Learning [J]. Computer Engineering and Applications, 2022, 58(7): 276-285. |
[15] | ZHANG Hao, ZHANG Xiaoyu, ZHANG Zhenyou, LI Wei. Summary of Intrusion Detection Models Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(6): 17-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||