Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (10): 27-40.DOI: 10.3778/j.issn.1002-8331.2111-0131
• Research Hotspots and Reviews • Previous Articles Next Articles
YANG Guangqi, LIU Hui, ZHONG Xiwu, CHEN Long, QIAN Yurong
Online:
2022-05-15
Published:
2022-04-15
杨广奇,刘慧,钟锡武,陈龙,钱育蓉
YANG Guangqi, LIU Hui, ZHONG Xiwu, CHEN Long, QIAN Yurong. Temporal and Spatial Fusion of Remote Sensing Images:A Review[J]. Computer Engineering and Applications, 2022, 58(10): 27-40.
杨广奇, 刘慧, 钟锡武, 陈龙, 钱育蓉. 遥感图像时空融合综述[J]. 计算机工程与应用, 2022, 58(10): 27-40.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2111-0131
[1] 刘建波,马勇,武易天,等.遥感高时空融合方法的研究进展及应用现状[J].遥感学报,2016,20(5):1038-1049. LIU J B,MA Y,WU Y T,et al.Review of methods and applications of high spatiotemporal fusion of remote sensing data[J].Journal of Remote Sensing,2016,20(5):1038-1049. [2] 李树涛,李聪妤,康旭东.多源遥感图像融合发展现状与未来展望[J].遥感学报,2021,25(1):148-166. LI S T,LI C Y,KANG X D.Development status and future prospects of multi-source remote sensing image fusion[J].Journal of Remote Sensing,2021,25(1):148-166. [3] LI W,ZHANG X,PENG Y,et al.Spatiotemporal fusion of remote sensing images using a convolutional neural network with attention and multiscale mechanisms[J].International Journal of Remote Sensing,2021,42(6):1973-1993. [4] WALKER J J,DE BEURS K M,WYNNE R H,et al.Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology[J].Remote Sensing of Environment,2012,117:381-393. [5] JIA D,CHENG C,SONG C,et al.A hybrid deep learning-based spatiotemporal fusion method for combining satellite images with different resolutions[J].Remote Sensing,2021,13(4):645. [6] 蒋文杰,罗晓曙,戴沁璇.基于对抗网络遥感图像超分辨率重建研究[J].计算机工程与应用,2020,56(21):199-203. JIANG W J,LUO X S,DAI Q X.Research on super-resolution reconstruction of remote sensing image based on improved conditional generative adversarial networks[J].Computer Engineering and Applications,2020,56(21):199-203. [7] 张永梅,滑瑞敏,马健喆,等.基于深度学习与超分辨率重建的遥感高时空融合方法[J].计算机工程与科学,2020,42(9):1578-1586. ZHANG Y M,HUA R M,MA J Z,et al.A high spatial temporal fusion method based on deep learning and super resolution reconstruction[J].Computer Engineering and Science,2020,42(9):1578-1586. [8] 董文全,蒙继华.遥感数据时空融合研究进展及展望[J].国土资源遥感,2018,30(2):1-11. DONG W Q,MENG J H.Review of spatiotemporal fusion model of remote sensing data[J].Remote Sensing for Land and Resources,2018,30(2):1-11. [9] LI J,LI Y,HE L,et al.Spatio-temporal fusion for remote sensing data:an overview and new benchmark[J].Science China:Information Sciences,2020,63(4):140301. [10] CHEN B,HUANG B,XU B.Comparison of spatiotemporal fusion models:a review[J].Remote Sensing,2015,7(2):1798-1835. [11] 万亚玲,钟锡武,刘慧,等.卷积神经网络在高光谱图像分类中的应用综述[J].计算机工程与应用,2021,57(4):1-10. WAN Y L,ZHONG X W,LIU H,et al.Survey of application of convolutional neural network in classification of hyperspectral images[J].Computer Engineering and Applications,2021,57(4):1-10. [12] LIU H,QIAN Y,ZHONG X,et al.Research on super-resolution reconstruction of remote sensing images:a comprehensive review[J].Optical Engineering,2021,60(10):100901. [13] MASUOKA E,FLEIG A,WOLFE R E,et al.Key characteristics of MODIS data products[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(4):1313-1323. [14] ZHU X,CAI F,TIAN J,et al.Spatiotemporal fusion of multisource remote sensing data:literature survey,taxonomy,principles,applications,and future directions[J].Remote Sensing,2018,10(4):527. [15] ZHUKOV B,OERTEL D,LANZL F,et al.Unmixing-based multisensor multiresolution image fusion[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1212-1226. [16] ZHANG W,LI A,JIN H,et al.An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data[J].Remote Sensing,2013,5(10):5346-5368. [17] GAO F,MASEK J,SCHWALLER M,et al.On the blending of the Landsat and MODIS surface reflectance:predicting daily Landsat surface reflectance[J].IEEE Transactions on Geoscience and Remote sensing,2006,44(8):2207-2218. [18] LI A,BO Y,ZHU Y,et al.Blending multi-resolution satellite sea surface temperature(SST) products using Bayesian maximum entropy method[J].Remote Sensing of Environment,2013,135:52-63. [19] HUANG B,ZHANG H,SONG H,et al.Unified fusion of remote-sensing imagery:generating simultaneously high-resolution synthetic spatial-temporal-spectral earth observations[J].Remote Sensing Letters,2013,4(6):561-569. [20] HUANG B,SONG H.Spatiotemporal reflectance fusion via sparse representation[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(10):3707-3716. [21] SONG H,HUANG B.Spatiotemporal satellite image fusion through one-pair image learning[J].IEEE Transactions on Geoscience and Remote Sensing,2012,51(4):1883-1896. [22] WANG S,CAO J,YU P.Deep learning for spatio-temporal data mining:a survey[J].arXiv:1906.04928,2019. [23] ZHU X,HELMER E H,GAO F,et al.A flexible spatiotemporal method for fusing satellite images with different resolutions[J].Remote Sensing of Environment,2016,172:165-177. [24] GEVAERT C M,GARCíA-HARO F J.A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion[J].Remote Sensing of Environment,2015,156:34-44. [25] MASELLI F,REMBOLD F.Integration of LAC and GAC NDVI data to improve vegetation monitoring in semi-arid environments[J].International Journal of Remote Sensing,2002,23(12):2475-2488. [26] AMORóS-LóPEZ J,GóMEZ-CHOVA L,ALONSO L,et al.Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring[J].International Journal of Applied Earth Observation and Geoinformation,2013,23:132-141. [27] WU M,NIU Z,WANG C,et al.Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model[J].Journal of Applied Remote Sensing,2012,6(1):063507. [28] WU M,HUANG W,NIU Z,et al.Generating daily synthetic Landsat imagery by combining Landsat and MODIS data[J].Sensors,2015,15(9):24002-24025. [29] LU M,CHEN J,TANG H,et al.Land cover change detection by integrating object-based data blending model of Landsat and MODIS[J].Remote Sensing of Environment,2016,184:374-386. [30] ZURITA-MILLA R,CLEVERS J G P W,SCHAEPMAN M E.Unmixing-based Landsat TM and MERIS FR data fusion[J].IEEE Geoscience and Remote Sensing Letters,2008,5(3):453-457. [31] ZHU X,CHEN J,GAO F,et al.An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J].Remote Sensing of Environment,2010,114(11):2610-2623. [32] HILKER T,WULDER M A,COOPS N C,et al.A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J].Remote Sensing of Environment,2009,113(8):1613-1627. [33] WENG Q,FU P,GAO F.Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data[J].Remote Sensing of Environment,2014,145:55-67. [34] HWANG T,SONG C,BOLSTAD P V,et al.Downscaling real-time vegetation dynamics by fusing multi-temporal MODIS and Landsat NDVI in topographically complex terrain[J].Remote Sensing of Environment,2011,115(10):2499-2512. [35] SHEN H,WU P,LIU Y,et al.A spatial and temporal reflectance fusion model considering sensor observation differences[J].International Journal of Remote Sensing,2013,34(12):4367-4383. [36] FU D,CHEN B,WANG J,et al.An improved image fusion approach based on enhanced spatial and temporal the adaptive reflectance fusion model[J].Remote Sensing,2013,5(12):6346-6360. [37] ZHANG H,SUN Y,SHI W,et al.An object-based spatiotemporal fusion model for remote sensing images[J].European Journal of Remote Sensing,2021,54(1):86-101. [38] LIAO L,SONG J,WANG J,et al.Bayesian method for building frequent Landsat-like NDVI datasets by integrating MODIS and Landsat NDVI[J].Remote Sensing,2016,8(6):452. [39] XUE J,LEUNG Y,FUNG T.A Bayesian data fusion approach to spatio-temporal fusion of remotely sensed images[J].Remote Sensing,2017,9(12):1310. [40] SHEN H,MENG X,ZHANG L.An integrated framework for the spatio-temporal-spectral fusion of remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(12):7135-7148. [41] WU B,HUANG B,ZHANG L.An error-bound-regularized sparse coding for spatiotemporal reflectance fusion[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(12):6791-6803. [42] LIU X,DENG C,WANG S,et al.Fast and accurate spatiotemporal fusion based upon extreme learning machine[J].IEEE Geoscience and Remote Sensing Letters,2016,13(12):2039-2043. [43] MOOSAVI V,TALEBI A,MOKHTARI M H,et al.A wavelet-artificial intelligence fusion approach(WAIFA) for blending Landsat and MODIS surface temperature[J].Remote Sensing of Environment,2015,169:243-254. [44] WEI J,WANG L,LIU P,et al.Spatiotemporal fusion of remote sensing images with structural sparsity and semi-coupled dictionary learning[J].Remote Sensing,2017,9(1):21. [45] LI X,LING F,FOODY G M,et al.Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps[J].Remote Sensing of Environment,2017,196:293-311. [46] QUAN J,ZHAN W,MA T,et al.An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes[J].Remote Sensing of Environment,2018,206:403-423. [47] SONG H,LIU Q,WANG G,et al.Spatiotemporal satellite image fusion using deep convolutional neural networks[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(3):821-829. [48] THOMAS C,RANCHIN T,WALD L,et al.Synthesis of multispectral images to high spatial resolution:a critical review of fusion methods based on remote sensing physics[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(5):1301-1312. [49] TAN Z,YUE P,DI L,et al.Deriving high spatiotemporal remote sensing images using deep convolutional network[J].Remote Sensing,2018,10(7):1066. [50] TAN Z,DI L,ZHANG M,et al.An enhanced deep convolutional model for spatiotemporal image fusion[J].Remote Sensing,2019,11(24):2898. [51] LIU X,DENG C,CHANUSSOT J,et al.StfNet:a two-stream convolutional neural network for spatiotemporal image fusion[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(9):6552-6564. [52] WANG X F,WANG X Y.Spatiotemporal fusion of remote sensing image based on deep learning[J].Journal of Sensors,2020.DOI:10.1155/2020/8873079. [53] ZHANG H,SONG Y,HAN C,et al.Remote sensing image spatiotemporal fusion using a generative adversarial network[J].IEEE Transactions on Geoscience and Remote Sensing,2020,59(5):4273-4286. [54] LEDIG C,THEIS L,HUSZáR F,et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:4681-4690. [55] TAN Z,GAO M,LI X,et al.A flexible reference-insensitive spatiotemporal fusion model for remote sensing images using conditional generative adversarial network[J].IEEE Transactions on Geoscience and Remote Sensing,2021.DOI:10.1109/TGRS.2021.3050551. [56] LI W,ZHANG X,PENG Y,et al.DMNet:a network architecture using dilated convolution and multiscale mechanisms for spatiotemporal fusion of remote sensing images[J].IEEE Sensors Journal,2020,20(20):12190-12202. [57] PENG M,ZHANG L,SUN X,et al.A fast three-dimensional convolutional neural network-based spatiotemporal fusion method(STF3DCNN) using a spatial-temporal-spectral dataset[J].Remote Sensing,2020,12(23):3888. [58] LI W,CAO D,PENG Y,et al.MSNet:a multi-stream fusion network for remote sensing spatiotemporal fusion based on transformer and convolution[J].Remote Sensing,2021,13(18):3724. [59] HUYNH-THU Q,GHANBARI M.Scope of validity of PSNR in image/video quality assessment[J].Electronics Letters,2008,44(13):800-801. [60] CHEN Z,PU H,WANG B,et al.Fusion of hyperspectral and multispectral images:a novel framework based on generalization of pan-sharpening methods[J].IEEE Geoscience and Remote Sensing Letters,2014,11(8):1418-1422. [61] WALD L.Quality of high resolution synthesised images:is there a simple criterion?[C]//3rd Conference on Fusion of Earth Data:Merging Point Measurements,Raster Maps and Remotely Sensed Images,2000:99-103. [62] YUHAS R H,GOETZ A F H,BOARDMAN J W.Discrimination among semi-arid landscape endmembers using the spectral angle mapper(SAM) algorithm[C]//Summaries of the 3rd Annual JPL Airborne Geoscience Workshop,1992,1:147-149. [63] ALPARONE L,WALD L,CHANUSSOT J,et al.Comparison of pansharpening algorithms:outcome of the 2006 GRS-S data-fusion contest[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(10):3012-3021. [64] ZHANG Z,BLUM R S.A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application[J].Proceedings of the IEEE,1999,87(8):1315-1326. |
[1] | GAO Guangshang. Survey on Attention Mechanisms in Deep Learning Recommendation Models [J]. Computer Engineering and Applications, 2022, 58(9): 9-18. |
[2] | JI Meng, HE Qinglong. AdaSVRG: Accelerating SVRG by Adaptive Learning Rate [J]. Computer Engineering and Applications, 2022, 58(9): 83-90. |
[3] | LUO Xianglong, GUO Huang, LIAO Cong, HAN Jing, WANG Lixin. Spatiotemporal Short-Term Traffic Flow Prediction Based on Broad Learning System [J]. Computer Engineering and Applications, 2022, 58(9): 181-186. |
[4] | Alim Samat, Sirajahmat Ruzmamat, Maihefureti, Aishan Wumaier, Wushuer Silamu, Turgun Ebrayim. Research on Sentence Length Sensitivity in Neural Network Machine Translation [J]. Computer Engineering and Applications, 2022, 58(9): 195-200. |
[5] | CHEN Yixiao, Alifu·Kuerban, LIN Wenlong, YUAN Xu. CA-YOLOv5 for Crowded Pedestrian Detection [J]. Computer Engineering and Applications, 2022, 58(9): 238-245. |
[6] | FANG Yiqiu, LU Zhuang, GE Junwei. Forecasting Stock Prices with Combined RMSE Loss LSTM-CNN Model [J]. Computer Engineering and Applications, 2022, 58(9): 294-302. |
[7] | SHI Jie, YUAN Chenxiang, DING Fei, KONG Weixiang. Survey of Building Target Detection in SAR Images [J]. Computer Engineering and Applications, 2022, 58(8): 58-66. |
[8] | XIONG Fengguang, ZHANG Xin, HAN Xie, KUANG Liqun, LIU Huanle, JIA Jionghao. Research on Improved Semantic Segmentation of Remote Sensing [J]. Computer Engineering and Applications, 2022, 58(8): 185-190. |
[9] | YANG Jinfan, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, LI Kecen, GAO Jing. Review of One-Stage Vehicle Detection Algorithms Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(7): 55-67. |
[10] | WANG Bin, LI Xin. Research on Multi-Source Domain Adaptive Algorithm Integrating Dynamic Residuals [J]. Computer Engineering and Applications, 2022, 58(7): 162-166. |
[11] | TAN Shuqiu, TANG Guofang, TU Yuanya, ZHANG Jianxun, GE Panjie. Classroom Monitoring Students Abnormal Behavior Detection System [J]. Computer Engineering and Applications, 2022, 58(7): 176-184. |
[12] | ZHANG Meiyu, LIU Yuehui, HOU Xianghui, QIN Xujia. Automatic Coloring Method for Gray Image Based on Convolutional Network [J]. Computer Engineering and Applications, 2022, 58(7): 229-236. |
[13] | ZHANG Zhuangzhuang, QU Licheng, LI Xiang, ZHANG Minghao, LI Zhaolu. Traffic Flow Prediction with Missing Data Based on Spatial-Temporal Convolutional Neural Networks [J]. Computer Engineering and Applications, 2022, 58(7): 259-265. |
[14] | XU Jie, ZHU Yukun, XING Chunxiao. Research on Financial Trading Algorithm Based on Deep Reinforcement Learning [J]. Computer Engineering and Applications, 2022, 58(7): 276-285. |
[15] | ZHANG Hao, ZHANG Xiaoyu, ZHANG Zhenyou, LI Wei. Summary of Intrusion Detection Models Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(6): 17-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||