Computer Engineering and Applications ›› 2021, Vol. 57 ›› Issue (4): 199-208.DOI: 10.3778/j.issn.1002-8331.1912-0240

Previous Articles     Next Articles

Hyperspectral Image Classification Based on SPCA and Domain Transform Recursive Filtering

YU Duo, HUANG Yongdong   

  1. 1.Institute of Image Processing and Understanding, North Minzu University, Yinchuan 750021, China
    2.Center for Mathematics and Information Science, Dalian Minzu University, Dalian, Liaoning 116600, China
  • Online:2021-02-15 Published:2021-02-06

基于SPCA和域变换递归滤波的高光谱图像分类

于多,黄永东   

  1. 1.北方民族大学 图像处理与理解研究所,银川 750021
    2.大连民族大学 数学与信息科学研究中心,辽宁 大连 116600

Abstract:

A new hyperspectral image classification method is proposed based on Segmented Principal Component Analysis(SPCA) and Domain Transform Recursive Filtering(DTRF). First, the SPCA method is used to reduce the dimension of hyperspectral image and extract the first principal component of each band subset. Then, DTRF with different parameters deals with the first principal component of each band subset to form a stacked edge-preserving filter map. And the Principal Component Analysis(PCA) is used to fuse the features of the stack-preserving filter map. At last, the Basic Thresholding Classifier(BTC) classifies the fused principal components. Simulation experiments show that the proposed method can improve the classification accuracy, and the overall accuracy, average accuracy and Kappa coefficient are higher than the some existing methods.

Key words: Principal Component Analysis(PCA), Segmented Principal Component Analysis(SPCA), Domain Transform Recursive Filtering(DTRF), hyperspectral image classification, basic thresholding classifier

摘要:

提出一种基于分割的主成分分析(Segmented Principal Component Analysis,SPCA)和域变换递归滤波(Domain Transform Recursive Filtering,DTRF)的高光谱图像分类算法。利用SPCA方法降低高光谱图像的维数和提取各波段子集的第一主成分。使用不同参数的域变换递归滤波器对各波段子集第一主成分进行滤波,形成堆叠的边缘保持滤波图。采用主成分分析(Principal Component Analysis,PCA)将堆叠的边缘保持滤波图进行特征融合。利用基本阈值分类器(Basic Thresholding Classifier,BTC)对融合后的主成分进行分类。仿真实验表明,所提方法能够提高分类精度,且在总体分类精度、平均分类精度、Kappa系数等方面优于已有方法。

关键词: 主成分分析(PCA), 分割的主成分分析(SPCA), 域变换递归滤波(DTRF), 高光谱图像分类, 基本阈值分类器