[1] SINGH S,PARMAR K S,KUMAR J.Soft computing model coupled with statistical models to estimate future of stock market[J].Neural Computing and Applications,2021,33:7629-7647.
[2] XING D Z,LI H F,LI J C,et al.Forecasting price of financial market crash via a new nonlinear potential GARCH model[J].Physica A:Statistical Mechanics and its Applications,2021,566.
[3] TAN Z F,ZHANG J L,WANG J H,et al.Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models[J].Applied Energy,2010,87(11).
[4] AKRAMI S A,EL-SHAFIE A,NASERI M,et al.Rainfall data analyzing using moving average(MA) model and wavelet multi-resolution intelligent model for noise evaluation to impr-ove the forecasting accuracy[J].Neural Computing and Applications,2014,25(7/8).
[5] KIM T Y,OH K J,KIM C,et al.Artificial neural networks for non-stationary time series[J].Neurocomputing,2004,61.
[6] SUTSKEVER I,HINTON G E.Deep,narrow sigmoid belief networks are universal approximators[J].Neural Computation,2008,20(11).
[7] BENGIO Y,SIMARD P,FRASCONI P.Learning long-term dependencies with gradient descent is difficult.[J].IEEE Transactions on Neural Networks,1994,5(2).
[8] HOCHREITER S,SCHMIDHUBER J.Long Short-Term Memory[J].Neural Computation,1997,9(8).
[9] 高学金,孟令军,高慧慧.基于注意力LSTM的多阶段发酵过程集成质量预测[J/OL].控制与决策:1-10[2021-02-26].https://doi.org/10.13195/j.kzyjc.2020.1538.
GAO X J,MENG L J,GAO H H.Integrated quality prediction of multi-stage fermentation process with attention-based LSTM[J/OL].Control and Decision:1-10[2021-02-26].https://doi.org/10.13195/j.kzyjc.2020.1538.
[10] 刘奇,陈红梅,罗川.基于改进的蝗虫优化算法的红细胞供应预测方法[J].计算机科学,2021,48(2):224-230.
LIU Q,CHEN H M,LUO C.Method for prediction of red blood cells supply based on improved grasshopper optimization algorithm[J].Computer Science,2021,48(2):224-230.
[11] 林培光,周佳倩,温玉莲.SCONV:一种基于情感分析的金融市场趋势预测方法[J].计算机研究与发展,2020,57(8):1769-1778.
LIN P G,ZHOU J Q,WEN Y L.SCONV:a financial market trend forecast method based on emotional analysis[J].Journal of Computer Research and Development,2020,57(8):1769-1778.
[12] 景楠,史紫荆,舒毓民.基于注意力机制和CNN-LSTM模型的沪铜期货高频价格预测[J/OL].中国管理科学:1-13[2021-02-08].https://doi.org/10.16381/j.cnki.issn1003-207x.
2020.0342.
JING N,SHI Z J,SHU Y M.Forecasting high frequency price of shanghai copper futures based on attention mechanism and CNN-LSTM[J/OL].Chinese Journal of Management Science:1-13[2021-02-08].https://doi.org/10.16381/j.
cnki.issn1003-207x.2020.0342.
[13] BAO W,YUE J,RAO Y,et al.A deep learning framework for financial time series using stacked autoencoders and long-short term memory[J].PLoS One,2017,12(7):e0180944.
[14] ZHANG L,AGGARWAL C,QI G J.Stock price prediction via discovering multi-frequency trading patterns[C]//ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2017:2141-2149.
[15] CHO K,MERRIENBOER B V,BAHDANAU D,et al.On the properties of neural machine translation:encoder-decoder approaches[J].arXiv:1409.1259,2014.
[16] UGURLU U,OKSUZ I,TAS O.Electricity price forecasting using recurrent neural networks[J].Energies,2018,11(5):1-23.
[17] 赵兵,王增平,纪维佳,等.基于注意力机制的CNN-GRU短期电力负荷预测方法[J].电网技术,2019,43(12):4370-4376.
ZHAO B,WANG Z P,JI W J,et al.A short-term power load forecasting method based on attention mechanism of CNN-GRU[J].Power System Technology,2019,43(12):4370-4376.
[18] 郭金录.基于VMD-EEMD-LSTM模型的沪深300指数预测研究[J].现代财经(天津财经大学学报),2020,40(8):31-44.
GUO J L.Research on the forecast of CSI 300 index based on VMD-EEMD-LSTM model[J].Modern Finance and Economics-Journal of Tianjin University of Finance and Economics,2020,40(8):31-44.
[19] KIM H Y,WON C H.Forecasting the volatility of stock price index:a hybrid model integrating LSTM with multiple GARCH-type models[J].Expert Systems with Applications,2018,103(8):25-37.
[20] BUKHARI A H,RAJA M,SULAIMAN M,et al.Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting[J].IEEE Access,2020,8:71326-71338.
[21] 郑挺国,王霞.中国产出缺口的实时估计及其可靠性研究[J].经济研究,2010,45(10):129-142.
ZHENG T G,WANG X.Real time estimates of Chinese output gap and reliability analysis[J].Economic Research Journal,2010,45(10):129-142.
[22] 赵昕东.基于菲利普斯曲线的中国产出缺口估计[J].世界经济,2008(1):57-64.
ZHAO X D.Estimation of China’s output gap based on Phillips curve[J].The Journal of World Economy,2008(1):57-64.
[23] 桂文林,韩兆洲.PPI与CPI关系及我国通货膨胀治理[J].统计研究,2011,28(9):49-56.
GUI W L,HAN Z Z.The inflation control and relation between CPI and PPI in China[J].Statistical Research,2011,28(9):49-56.
[24] 杨瑾,王烁.商业银行核心存款的估算与流动性管理[J].国际金融研究,2005(9):40-45.
YANG J,WANG S.Estimation and liquidity management of core deposits in commercial banks[J].Studies of International Finance,2005(9):40-45.
[25] 姚远,刘振清,翟佳,等.人民币汇率的双成分混合波动率模型[J].管理科学学报,2019,22(11):91-105.
YAO Y,LIU Z Q,ZHAI J,et al.Two-component hybrid volatility models on CNY exchange rates[J].Journal of Management Sciences in China,2019,22(11):91-105.
[26] 周亮.机器学习融合ARIMA模型的离岸人民币汇率预测[J].统计学报,2020,1(2):48-56.
ZHOU L.Offshore RMB exchange rate prediction based on combining machine learning with ARIMA model[J].Journal of Statistics,2020,1(2):48-56.
[27] 杨建辉,张然欣.基于HP滤波和GARCH模型的股票价格趋势预测[J].统计与决策,2013(5):84-87.
YANG J H,ZHANG R X.Stock price trend prediction based on HP filter and GARCH model[J].Statistics & Decision,2013(5):84-87.
[28] 宋博,陈万义.基于HP滤波和ARMA-GARCH模型的人民币汇率趋势预测[J].数学的实践与认识,2017,47(1):70-78.
SONG B,CHEN W Y.Trend prediction of RMB exchange rate based on the HP filter and ARMA-GARCH model[J].Mathematics in Practice and Theory,2017,47(1):70-78.