GENG Lixiao, LIU Lisha, LI Hengyu. Research on Stock Index Prediction Driven by Multi-source Heterogeneous Data Fusion[J]. Computer Engineering and Applications, 2021, 57(20): 142-149.
[1] FAMA E F.Efficient capital markets:II[J].The Journal of Finance,1991,46(5):1575-1617.
[2] RECHENTHIN M,STREET W N.Using conditional probability to identify trends in intra-day high-frequency equity pricing[J].Physica A-Statistical Mechanics and Its Applications,2013,392(24):6169-6188.
[3] 孔翔宇,毕秀春,张曙光.财经新闻与股市预测——基于数据挖掘技术的实证分析[J].数理统计与管理,2016,35(2):215-224.
KONG X Y,BI X C,ZHANG S G.Financial news and prediction for stock market:an empirical analysis based on data mining techniques[J].Journal of Applied Statistics and Management,2016,35(2):215-224.
[4] 陈卫华,徐国祥.基于深度学习和股票论坛数据的股市波动率预测精度研究[J].管理世界,2018,34(1):180-181.
CHEN W H,XU G X.Research on prediction accuracy of stock market volatility based on deep learning and stock forum data[J].Management World,2008,34(1):180-181.
[5] CHAN W S.Stock price reaction to news and no-news:drift and reversal after headlines[J].Journal of Financial Economics,2003,70(2):223-260.
[6] VEGA C.Stock price reaction to public and private information[J].Journal of Financial Economics,2006,82(1):103-133.
[7] CHEUNG Y W,NG L K.Stock price dynamics and firm size:an empirical investigation[J].The Journal of Finance,1992,47(5):1985-1997.
[8] BOLLEN J,MAO H N,ZENG X J.Twitter mood predicts the stock market[J].Journal of Computational Science,2011,2(1):1-8.
[9] LI Q,WANG T J,LI P,et al.The effect of news and public mood on stock movements[J].Information Sciences,2014,278:826-840.
[10] NGUYEN T H,SHIRAI K,VELCIN J.Sentiment analysis on social media for stock movement prediction[J].Expert Systems with Applications,2015,42(24):9603-9611.
[11] NASSIRTOUSSI A K,AGHABOZORGI S,TEH Y W,et al.Text mining for market prediction:a systematic review[J].Expert Systems with Applications,2014,41(16):7653-7670.
[12] GROSS-KLUSSMANN A,KONIG S,EBNER M.Buzzwords build momentum:global financial Twitter sentiment and the aggregate stock market[J].Expert Systems with Applications,2019,136:171-186.
[13] LIU Y,ZENG Q G,MERE J O,et al.Anticipating stock market of the renowned companies:a knowledge graph approach[J].Complexity,2019.
[14] XUN J Y,GUO B A.Twitter as customer’s eWOM:an empirical study on their impact on firm financial performance[J].Internet Research,2017,27(5):1014-1038.
[15] 王燕,郭元凯.改进的XGBoost模型在股票预测中的应用[J].计算机工程与应用,2019,55(20):202-207.
WANG Y,GUO Y K.Application of improved XGBoost model in stock forecasting[J].Computer Engineering and Applications,2019,55(20):202-207.
[16] KRAUS M,FEUERRIEGEL S.Decision support from financial disclosures with deep neural networks and transfer learning[J].Decision Support Systems,2017,104:38-48.
[17] 赵红蕊,薛雷.基于LSTM-CNN-CBAM模型的股票预测研究[J].计算机工程与应用,2021,57(3):203-207.
ZHAO H R,XUE L.Research on stock forecasting based on LSTM-CNN-CBAM model[J].Computer Engineering and Applications,2021,57(3):203-207.
[18] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.